YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Stress Responses Associated with Earth Pressure Balance Shield Tunneling in Dry Granular Ground Using the Discrete-Element Method

    Source: International Journal of Geomechanics:;2019:;Volume ( 019 ):;issue: 007
    Author:
    Shuying Wang
    ,
    Tongming Qu
    ,
    Yong Fang
    ,
    Jinyang Fu
    ,
    Junsheng Yang
    DOI: 10.1061/(ASCE)GM.1943-5622.0001434
    Publisher: American Society of Civil Engineers
    Abstract: This study investigates stress responses associated with earth pressure balance (EPB) shield tunneling in dry granular ground. A numerical model using the discrete-element method (DEM) was employed to simulate both the advancement of EPB shield and the discharge of muck from the chamber. Some critical ground stress variations associated with tunneling were thus effectively captured. Numerical results show that the responses of the principal stress in dry granular ground, namely changes of magnitude and rotation angle, significantly depend on both the discharge rate of muck and the distance from tunnel face. The average value and distribution features of stress at the tunnel face are also subjected to the discharge rates of muck in the shield chamber. To be specific, in the case without muck discharge out of the chamber, the average stress at the tunnel face first increases with increases in advancement distance and subsequently tends toward a stable value. But for the case of discharging muck with an upper limit rate, the stress first decreases rapidly to a minimum value and subsequently increases to a stable value. Further, a significant stress release area is also found in the proximity of the tunnel face, and the changes in the contact forces among soil particles are far less than those in the case without muck discharge.
    • Download: (3.916Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Stress Responses Associated with Earth Pressure Balance Shield Tunneling in Dry Granular Ground Using the Discrete-Element Method

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4260305
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorShuying Wang
    contributor authorTongming Qu
    contributor authorYong Fang
    contributor authorJinyang Fu
    contributor authorJunsheng Yang
    date accessioned2019-09-18T10:41:22Z
    date available2019-09-18T10:41:22Z
    date issued2019
    identifier other%28ASCE%29GM.1943-5622.0001434.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4260305
    description abstractThis study investigates stress responses associated with earth pressure balance (EPB) shield tunneling in dry granular ground. A numerical model using the discrete-element method (DEM) was employed to simulate both the advancement of EPB shield and the discharge of muck from the chamber. Some critical ground stress variations associated with tunneling were thus effectively captured. Numerical results show that the responses of the principal stress in dry granular ground, namely changes of magnitude and rotation angle, significantly depend on both the discharge rate of muck and the distance from tunnel face. The average value and distribution features of stress at the tunnel face are also subjected to the discharge rates of muck in the shield chamber. To be specific, in the case without muck discharge out of the chamber, the average stress at the tunnel face first increases with increases in advancement distance and subsequently tends toward a stable value. But for the case of discharging muck with an upper limit rate, the stress first decreases rapidly to a minimum value and subsequently increases to a stable value. Further, a significant stress release area is also found in the proximity of the tunnel face, and the changes in the contact forces among soil particles are far less than those in the case without muck discharge.
    publisherAmerican Society of Civil Engineers
    titleStress Responses Associated with Earth Pressure Balance Shield Tunneling in Dry Granular Ground Using the Discrete-Element Method
    typeJournal Paper
    journal volume19
    journal issue7
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0001434
    page04019060
    treeInternational Journal of Geomechanics:;2019:;Volume ( 019 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian