YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Cell Transmission Modeling of Heterogeneous Disordered Traffic

    Source: Journal of Transportation Engineering, Part A: Systems:;2019:;Volume ( 145 ):;issue: 007
    Author:
    Sai Kiran Mayakuntla
    ,
    Ashish Verma
    DOI: 10.1061/JTEPBS.0000248
    Publisher: American Society of Civil Engineers
    Abstract: Several macroscopic approaches exist for modeling the flow of the vehicular traffic in the developed economies, from kinematic wave models using first-order or higher-order systems of partial differential equations to spatially and temporally discretized models like cell transmission models and noncontinuum models that treat traffic as a collection of dynamic systems. The adaptation of these modeling approaches to the traffic in developing economies is made difficult by the latter’s high levels of heterogeneity and weak lane discipline. However, most of the existing studies on heterogeneous or multiclass traffic implicitly assume lane discipline. In the present article, the notion of heterogeneity in the contexts of developed and developing economies is discussed. It is argued that the differences in their aggregate traffic behaviors are a direct result of the presence of the small-sized, highly maneuverable vehicles like motorcycles and auto-rickshaws. In addition, vehicles are classified into two types: car-following and gap-filling, and two different forms of fundamental relationships are derived using some simplifying assumptions. Finally, a heuristic cell transmission model that is capable of reproducing the vehicle creeping phenomenon that is a salient feature of the heterogeneous, disordered traffic is presented, and its results are compared with those of a numerical scheme for a multiclass Lighthill-Whitham-Richards model.
    • Download: (1.807Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Cell Transmission Modeling of Heterogeneous Disordered Traffic

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4260297
    Collections
    • Journal of Transportation Engineering, Part A: Systems

    Show full item record

    contributor authorSai Kiran Mayakuntla
    contributor authorAshish Verma
    date accessioned2019-09-18T10:41:20Z
    date available2019-09-18T10:41:20Z
    date issued2019
    identifier otherJTEPBS.0000248.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4260297
    description abstractSeveral macroscopic approaches exist for modeling the flow of the vehicular traffic in the developed economies, from kinematic wave models using first-order or higher-order systems of partial differential equations to spatially and temporally discretized models like cell transmission models and noncontinuum models that treat traffic as a collection of dynamic systems. The adaptation of these modeling approaches to the traffic in developing economies is made difficult by the latter’s high levels of heterogeneity and weak lane discipline. However, most of the existing studies on heterogeneous or multiclass traffic implicitly assume lane discipline. In the present article, the notion of heterogeneity in the contexts of developed and developing economies is discussed. It is argued that the differences in their aggregate traffic behaviors are a direct result of the presence of the small-sized, highly maneuverable vehicles like motorcycles and auto-rickshaws. In addition, vehicles are classified into two types: car-following and gap-filling, and two different forms of fundamental relationships are derived using some simplifying assumptions. Finally, a heuristic cell transmission model that is capable of reproducing the vehicle creeping phenomenon that is a salient feature of the heterogeneous, disordered traffic is presented, and its results are compared with those of a numerical scheme for a multiclass Lighthill-Whitham-Richards model.
    publisherAmerican Society of Civil Engineers
    titleCell Transmission Modeling of Heterogeneous Disordered Traffic
    typeJournal Paper
    journal volume145
    journal issue7
    journal titleJournal of Transportation Engineering, Part A: Systems
    identifier doi10.1061/JTEPBS.0000248
    page04019027
    treeJournal of Transportation Engineering, Part A: Systems:;2019:;Volume ( 145 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian