YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Estimation of Route Travel Time Distribution with Information Fusion from Automatic Number Plate Recognition Data

    Source: Journal of Transportation Engineering, Part A: Systems:;2019:;Volume ( 145 ):;issue: 007
    Author:
    Fengjie Fu
    ,
    Wei Qian
    ,
    Hongzhao Dong
    DOI: 10.1061/JTEPBS.0000242
    Publisher: American Society of Civil Engineers
    Abstract: Route travel time varies with vehicles and traffic demand. Besides the average route travel time, route travel time reliability in the form of travel time distribution is indispensable. However, the sample size of Complete Route Travel Times (TTC) is rather small for many reasons. Existing methods using convolution distribution rely on strong assumptions about the correlation structure or the link travel time distributions; other methods relying on scaled Partial Route Travel Times (TTP) may extend the estimation bias. To overcome these issues, we present an estimation method for route travel time distribution by fusing kinds of route travel time information from Automatic Number Plate Recognition (ANPR) data. The proposed method firstly improves the data quality for estimation in four steps, including route redefinition, observation extraction, path inference, and scaling. Secondly, using TTP data, it convolutes the empirical travel time distributions on all the partial routes divided at the breakpoints identified by the Hopkins statistics. Thus, the link correlations are considered and the assumption about the correlation structure is eschewed. Thirdly, the convolution distribution and TTC information are fused to estimate the actual route travel time distribution based on Bayes’ theorem and Shannon’s information entropy. Finally, estimation results using different methods are compared to evaluate the developed model.
    • Download: (907.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Estimation of Route Travel Time Distribution with Information Fusion from Automatic Number Plate Recognition Data

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4260295
    Collections
    • Journal of Transportation Engineering, Part A: Systems

    Show full item record

    contributor authorFengjie Fu
    contributor authorWei Qian
    contributor authorHongzhao Dong
    date accessioned2019-09-18T10:41:19Z
    date available2019-09-18T10:41:19Z
    date issued2019
    identifier otherJTEPBS.0000242.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4260295
    description abstractRoute travel time varies with vehicles and traffic demand. Besides the average route travel time, route travel time reliability in the form of travel time distribution is indispensable. However, the sample size of Complete Route Travel Times (TTC) is rather small for many reasons. Existing methods using convolution distribution rely on strong assumptions about the correlation structure or the link travel time distributions; other methods relying on scaled Partial Route Travel Times (TTP) may extend the estimation bias. To overcome these issues, we present an estimation method for route travel time distribution by fusing kinds of route travel time information from Automatic Number Plate Recognition (ANPR) data. The proposed method firstly improves the data quality for estimation in four steps, including route redefinition, observation extraction, path inference, and scaling. Secondly, using TTP data, it convolutes the empirical travel time distributions on all the partial routes divided at the breakpoints identified by the Hopkins statistics. Thus, the link correlations are considered and the assumption about the correlation structure is eschewed. Thirdly, the convolution distribution and TTC information are fused to estimate the actual route travel time distribution based on Bayes’ theorem and Shannon’s information entropy. Finally, estimation results using different methods are compared to evaluate the developed model.
    publisherAmerican Society of Civil Engineers
    titleEstimation of Route Travel Time Distribution with Information Fusion from Automatic Number Plate Recognition Data
    typeJournal Paper
    journal volume145
    journal issue7
    journal titleJournal of Transportation Engineering, Part A: Systems
    identifier doi10.1061/JTEPBS.0000242
    page04019029
    treeJournal of Transportation Engineering, Part A: Systems:;2019:;Volume ( 145 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian