YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Real-Time Aerodynamics Hybrid Simulation: A Novel Wind-Tunnel Model for Flexible Bridges

    Source: Journal of Engineering Mechanics:;2019:;Volume ( 145 ):;issue: 009
    Author:
    Teng Wu
    ,
    Shaopeng Li
    ,
    Mettupalayam Sivaselvan
    DOI: 10.1061/(ASCE)EM.1943-7889.0001649
    Publisher: American Society of Civil Engineers
    Abstract: Despite rapid development in computational fluid dynamics, semiempirical analyses based on parameters identified from spring-mounted sectional models are still widely used to examine wind-induced effects on bridges. In addition, wind tunnel results from full-bridge aeroelastic models, viewed as the most comprehensive representations, are typically a final check for wind design of long-span cable-supported bridges. There are several well-known limitations associated with conventional wind tunnel testing of both sectional and full-bridge models. For example, structural nonlinearities and large deformations are difficult to simulate in sectional models, and only a limited number of modes can be accurately simulated in full-bridge aeroelastic models. To advance aeroelastic modeling of flexible bridges in the wind tunnel, a slightly different version of the real-time hybrid simulation (RTHS) techniques, frequently used in various branches of engineering, is developed here. Specifically, the skeleton of the sectional or full-bridge model, characterizing the dynamic properties (e.g., mass, damping, and stiffness of the structure), is numerically simulated using computational structural dynamics, while its skin, characterizing the aerodynamic and aeroelastic properties, is physically modeled in the wind tunnel. Aerodynamic inputs (gusts) are applied directly on the skin in the wind tunnel, while aeroelastic inputs (motions) are represented by the simulation outputs of the bridge skeleton. On the other hand, the dynamic inputs to the bridge skeleton are acquired from the measured forces (and moments) on the bridge skin. The interactions between the skeleton and skin of the bridge are accomplished through a system consisting of sensors, a network of electromagnetic actuators, and controllers. The time history of the wind-induced bridge responses can be obtained at the end of the proposed real-time aerodynamics hybrid simulation (RTAHS). The feasibility of the RTAHS methodology is demonstrated by a numerical example involving both linear and nonlinear wind-induced forces on the bridge deck.
    • Download: (1.696Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Real-Time Aerodynamics Hybrid Simulation: A Novel Wind-Tunnel Model for Flexible Bridges

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4260234
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorTeng Wu
    contributor authorShaopeng Li
    contributor authorMettupalayam Sivaselvan
    date accessioned2019-09-18T10:41:01Z
    date available2019-09-18T10:41:01Z
    date issued2019
    identifier other%28ASCE%29EM.1943-7889.0001649.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4260234
    description abstractDespite rapid development in computational fluid dynamics, semiempirical analyses based on parameters identified from spring-mounted sectional models are still widely used to examine wind-induced effects on bridges. In addition, wind tunnel results from full-bridge aeroelastic models, viewed as the most comprehensive representations, are typically a final check for wind design of long-span cable-supported bridges. There are several well-known limitations associated with conventional wind tunnel testing of both sectional and full-bridge models. For example, structural nonlinearities and large deformations are difficult to simulate in sectional models, and only a limited number of modes can be accurately simulated in full-bridge aeroelastic models. To advance aeroelastic modeling of flexible bridges in the wind tunnel, a slightly different version of the real-time hybrid simulation (RTHS) techniques, frequently used in various branches of engineering, is developed here. Specifically, the skeleton of the sectional or full-bridge model, characterizing the dynamic properties (e.g., mass, damping, and stiffness of the structure), is numerically simulated using computational structural dynamics, while its skin, characterizing the aerodynamic and aeroelastic properties, is physically modeled in the wind tunnel. Aerodynamic inputs (gusts) are applied directly on the skin in the wind tunnel, while aeroelastic inputs (motions) are represented by the simulation outputs of the bridge skeleton. On the other hand, the dynamic inputs to the bridge skeleton are acquired from the measured forces (and moments) on the bridge skin. The interactions between the skeleton and skin of the bridge are accomplished through a system consisting of sensors, a network of electromagnetic actuators, and controllers. The time history of the wind-induced bridge responses can be obtained at the end of the proposed real-time aerodynamics hybrid simulation (RTAHS). The feasibility of the RTAHS methodology is demonstrated by a numerical example involving both linear and nonlinear wind-induced forces on the bridge deck.
    publisherAmerican Society of Civil Engineers
    titleReal-Time Aerodynamics Hybrid Simulation: A Novel Wind-Tunnel Model for Flexible Bridges
    typeJournal Paper
    journal volume145
    journal issue9
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0001649
    page04019061
    treeJournal of Engineering Mechanics:;2019:;Volume ( 145 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian