YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Theoretical and Experimental Validation of Point Load Strength Test for Irregular Lumps

    Source: Journal of Engineering Mechanics:;2019:;Volume ( 145 ):;issue: 009
    Author:
    X. X. Wei
    ,
    K. T. Chau
    ,
    R. H. C. Wong
    DOI: 10.1061/(ASCE)EM.1943-7889.0001638
    Publisher: American Society of Civil Engineers
    Abstract: The possibility of testing irregular lumps under the point load strength test (PLST) was investigated theoretically and experimentally. In particular, a new analytical solution for stress distribution within a sphere under the diametral PLST was obtained by incorporating the classical solution with the Hertz contact stress. The stress distribution within the spheres was then compared with those of cylinders under the axial and diametral PLST, which were calculated by using the analytical solutions derived by the authors in 1999 and 2001, respectively. Numerical results showed that, if the dimensions of the spheres and cylinders are comparable, the stress distributions, especially the tensile stress distributions along the axis of loading within spheres and cylinders, are similar, both in terms of the magnitude and the pattern of stress distribution. The point load strength index was approximately the same for all three kinds of specimens. In addition, over 100 plaster specimens with different shapes (spheres, cylinders, hexagons, and cubes), three sizes (50, 60, and 75 mm), and two different strengths were tested using the axial or diametral PLST. The theoretical predictions agreed well with the experimental results. Thus, first by means of theoretical analysis, it was concluded that the point load strength index is not sensitive to the exact shape of the specimen, and secondly, it was further verified by experiments on plaster specimens.
    • Download: (606.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Theoretical and Experimental Validation of Point Load Strength Test for Irregular Lumps

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4260224
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorX. X. Wei
    contributor authorK. T. Chau
    contributor authorR. H. C. Wong
    date accessioned2019-09-18T10:40:59Z
    date available2019-09-18T10:40:59Z
    date issued2019
    identifier other%28ASCE%29EM.1943-7889.0001638.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4260224
    description abstractThe possibility of testing irregular lumps under the point load strength test (PLST) was investigated theoretically and experimentally. In particular, a new analytical solution for stress distribution within a sphere under the diametral PLST was obtained by incorporating the classical solution with the Hertz contact stress. The stress distribution within the spheres was then compared with those of cylinders under the axial and diametral PLST, which were calculated by using the analytical solutions derived by the authors in 1999 and 2001, respectively. Numerical results showed that, if the dimensions of the spheres and cylinders are comparable, the stress distributions, especially the tensile stress distributions along the axis of loading within spheres and cylinders, are similar, both in terms of the magnitude and the pattern of stress distribution. The point load strength index was approximately the same for all three kinds of specimens. In addition, over 100 plaster specimens with different shapes (spheres, cylinders, hexagons, and cubes), three sizes (50, 60, and 75 mm), and two different strengths were tested using the axial or diametral PLST. The theoretical predictions agreed well with the experimental results. Thus, first by means of theoretical analysis, it was concluded that the point load strength index is not sensitive to the exact shape of the specimen, and secondly, it was further verified by experiments on plaster specimens.
    publisherAmerican Society of Civil Engineers
    titleTheoretical and Experimental Validation of Point Load Strength Test for Irregular Lumps
    typeJournal Paper
    journal volume145
    journal issue9
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0001638
    page04019065
    treeJournal of Engineering Mechanics:;2019:;Volume ( 145 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian