YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Nonlinear Finite-Element Analysis of Laminated Glass Using the Four-Node Reissner-Mindlin Formulation and Assumed Transverse Shear Strain Fields

    Source: Journal of Engineering Mechanics:;2019:;Volume ( 145 ):;issue: 007
    Author:
    Guo Zheng Yew
    ,
    H. Scott Norville
    ,
    Stephen M. Morse
    DOI: 10.1061/(ASCE)EM.1943-7889.0001614
    Publisher: American Society of Civil Engineers
    Abstract: Laminated glass consists of at least two monolithic glass lites bonded together by an elastomeric interlayer. Existing mathematical models using the finite-difference method or the nine-node quadrilateral finite-element method were developed to numerically characterize the nonlinear behavior of laminated glass lites under bending and were benchmarked against available test data. The finite-difference solution was predicated on the well-known von Kármán equations, which are generally limited to the case of thin plates, while the nine-node quadrilateral finite element was predicated on the nonlinear Reissner-Mindlin plate formulation applicable to thick and thin plates but could result in a system of nonlinear equations that are computationally inefficient to solve. Therefore, a nonlinear four-node quadrilateral finite-element model for laminated glass based on the Reissner-Mindlin formulation is advanced. The assumed transverse shear strain fields method is employed to prevent shear locking and all the required stiffness terms are fully integrated. Hourglassing effects due to the reduced integration technique commonly used to prevent shear locking are mitigated and the stability of the numerical solution is preserved. The numerical solution obtained from the four-node element is in good agreement with available test data as well as the finite-difference solution.
    • Download: (3.128Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Nonlinear Finite-Element Analysis of Laminated Glass Using the Four-Node Reissner-Mindlin Formulation and Assumed Transverse Shear Strain Fields

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4260198
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorGuo Zheng Yew
    contributor authorH. Scott Norville
    contributor authorStephen M. Morse
    date accessioned2019-09-18T10:40:49Z
    date available2019-09-18T10:40:49Z
    date issued2019
    identifier other%28ASCE%29EM.1943-7889.0001614.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4260198
    description abstractLaminated glass consists of at least two monolithic glass lites bonded together by an elastomeric interlayer. Existing mathematical models using the finite-difference method or the nine-node quadrilateral finite-element method were developed to numerically characterize the nonlinear behavior of laminated glass lites under bending and were benchmarked against available test data. The finite-difference solution was predicated on the well-known von Kármán equations, which are generally limited to the case of thin plates, while the nine-node quadrilateral finite element was predicated on the nonlinear Reissner-Mindlin plate formulation applicable to thick and thin plates but could result in a system of nonlinear equations that are computationally inefficient to solve. Therefore, a nonlinear four-node quadrilateral finite-element model for laminated glass based on the Reissner-Mindlin formulation is advanced. The assumed transverse shear strain fields method is employed to prevent shear locking and all the required stiffness terms are fully integrated. Hourglassing effects due to the reduced integration technique commonly used to prevent shear locking are mitigated and the stability of the numerical solution is preserved. The numerical solution obtained from the four-node element is in good agreement with available test data as well as the finite-difference solution.
    publisherAmerican Society of Civil Engineers
    titleNonlinear Finite-Element Analysis of Laminated Glass Using the Four-Node Reissner-Mindlin Formulation and Assumed Transverse Shear Strain Fields
    typeJournal Paper
    journal volume145
    journal issue7
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0001614
    page04019042
    treeJournal of Engineering Mechanics:;2019:;Volume ( 145 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian