YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Implicit–Explicit Integration of Gradient-Enhanced Damage Models

    Source: Journal of Engineering Mechanics:;2019:;Volume ( 145 ):;issue: 007
    Author:
    Thomas Titscher
    ,
    Javier Oliver
    ,
    Jörg F. Unger
    DOI: 10.1061/(ASCE)EM.1943-7889.0001608
    Publisher: American Society of Civil Engineers
    Abstract: Quasi-brittle materials exhibit strain softening. Their modeling requires regularized constitutive formulations to avoid instabilities on the material level. A commonly used model is the implicit gradient-enhanced damage model. For complex geometries, it still shows structural instabilities when integrated with classical backward Euler schemes. An alternative is the implicit–explicit (IMPL-EX) integration scheme. It consists of the extrapolation of internal variables followed by an implicit calculation of the solution fields. The solution procedure for the nonlinear gradient-enhanced damage model is thus transformed into a sequence of problems that are algorithmically linear in every time step. Therefore, they require one single Newton–Raphson iteration per time step to converge. This provides both additional robustness and computational acceleration. The introduced extrapolation error is controlled by adaptive time-stepping schemes. This paper introduced and assessed two novel classes of error control schemes that provide further performance improvements. In a three-dimensional compression test for a mesoscale model of concrete, the presented scheme was about 40 times faster than an adaptive backward Euler time integration.
    • Download: (1.677Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Implicit–Explicit Integration of Gradient-Enhanced Damage Models

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4260193
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorThomas Titscher
    contributor authorJavier Oliver
    contributor authorJörg F. Unger
    date accessioned2019-09-18T10:40:48Z
    date available2019-09-18T10:40:48Z
    date issued2019
    identifier other%28ASCE%29EM.1943-7889.0001608.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4260193
    description abstractQuasi-brittle materials exhibit strain softening. Their modeling requires regularized constitutive formulations to avoid instabilities on the material level. A commonly used model is the implicit gradient-enhanced damage model. For complex geometries, it still shows structural instabilities when integrated with classical backward Euler schemes. An alternative is the implicit–explicit (IMPL-EX) integration scheme. It consists of the extrapolation of internal variables followed by an implicit calculation of the solution fields. The solution procedure for the nonlinear gradient-enhanced damage model is thus transformed into a sequence of problems that are algorithmically linear in every time step. Therefore, they require one single Newton–Raphson iteration per time step to converge. This provides both additional robustness and computational acceleration. The introduced extrapolation error is controlled by adaptive time-stepping schemes. This paper introduced and assessed two novel classes of error control schemes that provide further performance improvements. In a three-dimensional compression test for a mesoscale model of concrete, the presented scheme was about 40 times faster than an adaptive backward Euler time integration.
    publisherAmerican Society of Civil Engineers
    titleImplicit–Explicit Integration of Gradient-Enhanced Damage Models
    typeJournal Paper
    journal volume145
    journal issue7
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0001608
    page04019040
    treeJournal of Engineering Mechanics:;2019:;Volume ( 145 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian