YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dynamic Response of FG-CNT Composite Plate Resting on an Elastic Foundation Based on Higher-Order Shear Deformation Theory

    Source: Journal of Aerospace Engineering:;2019:;Volume ( 032 ):;issue: 005
    Author:
    Balakrishna Adhikari
    ,
    B. N. Singh
    DOI: 10.1061/(ASCE)AS.1943-5525.0001052
    Publisher: American Society of Civil Engineers
    Abstract: In this paper, the dynamic response of a functionally graded carbon nanotube–reinforced (FG-CNTRC) composite plate is obtained based on higher-order quasi-three-dimensional (3D) shear deformation theory (i.e., assuming a linear variation of transverse displacement through the thickness). The governing equations of motion are developed using the energy principle and solved using finite-element methods. Newmark’s time integration techniques are employed to obtain the forced response of FG-CNTRC plates. The accuracy of the present formulation is validated by tackling a few numerical cases and comparing finite-element solutions with accessible outcomes. Also, several new results are obtained for covering various features like thickness ratio, aspect ratio, and fiber volume fraction, among others, which can be considered as the benchmark study for future researchers. The outcomes demonstrate that the impact of Winkler foundation stiffness is not as great as the shear foundation stiffness on the natural frequency of the FG-CNTRC plates. The results also show that the free-vibration regime of the plate is highly influenced by duration of dynamic load on the plate. The present formulation gives excellent concurrence with the accessible literature.
    • Download: (2.945Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dynamic Response of FG-CNT Composite Plate Resting on an Elastic Foundation Based on Higher-Order Shear Deformation Theory

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4260184
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorBalakrishna Adhikari
    contributor authorB. N. Singh
    date accessioned2019-09-18T10:40:46Z
    date available2019-09-18T10:40:46Z
    date issued2019
    identifier other%28ASCE%29AS.1943-5525.0001052.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4260184
    description abstractIn this paper, the dynamic response of a functionally graded carbon nanotube–reinforced (FG-CNTRC) composite plate is obtained based on higher-order quasi-three-dimensional (3D) shear deformation theory (i.e., assuming a linear variation of transverse displacement through the thickness). The governing equations of motion are developed using the energy principle and solved using finite-element methods. Newmark’s time integration techniques are employed to obtain the forced response of FG-CNTRC plates. The accuracy of the present formulation is validated by tackling a few numerical cases and comparing finite-element solutions with accessible outcomes. Also, several new results are obtained for covering various features like thickness ratio, aspect ratio, and fiber volume fraction, among others, which can be considered as the benchmark study for future researchers. The outcomes demonstrate that the impact of Winkler foundation stiffness is not as great as the shear foundation stiffness on the natural frequency of the FG-CNTRC plates. The results also show that the free-vibration regime of the plate is highly influenced by duration of dynamic load on the plate. The present formulation gives excellent concurrence with the accessible literature.
    publisherAmerican Society of Civil Engineers
    titleDynamic Response of FG-CNT Composite Plate Resting on an Elastic Foundation Based on Higher-Order Shear Deformation Theory
    typeJournal Paper
    journal volume32
    journal issue5
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/(ASCE)AS.1943-5525.0001052
    page04019061
    treeJournal of Aerospace Engineering:;2019:;Volume ( 032 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian