YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    2D Drawing Visualization Framework for Applying Projection-Based Augmented Reality in a Panelized Construction Manufacturing Facility: Proof of Concept

    Source: Journal of Computing in Civil Engineering:;2019:;Volume ( 033 ):;issue: 005
    Author:
    SangJun Ahn
    ,
    SangUk Han
    ,
    Mohamed Al-Hussein
    DOI: 10.1061/(ASCE)CP.1943-5487.0000843
    Publisher: American Society of Civil Engineers
    Abstract: Product quality is recognized as a major benefit in industrialized construction because of the utilization of machines in manufacturing facilities. However, manual work continues to exist in complex assembly projects, which can potentially cause quality issues. To address such quality issues in industrialized manufacturing processes, projection-based augmented reality (AR) techniques have been applied in other industries (e.g., manufacturing), but on a smaller scale and at a short distance. To apply projection-based AR in the construction manufacturing facility, this paper proposes a framework that enables the user to perform a vision-based projection alignment using a projector and camera. The designated projection area determined by the user is marked out, the coordinates of which are then computed through segmentation and object-detection algorithms. After the acquisition of the markers’ coordinates is complete, a two-dimensional (2D) image is overlaid on the surface of the designated area using a projector by computing transformation matrix for the projection. To evaluate the potential performance in a field setting, the offset distances between the four corners of the projection boundary and the center of the markers are measured in various environments, such as at distances ranging from 5 to 8 m, and with different illumination conditions (i.e., low and high brightness) as well as in a manufacturing shop. The results indicate that average offset distances in all the experimental conditions are shorter than the factory tolerance level of 6.35 mm. Also, the statistical analysis reveals that both the distance and the illumination are significant factors affecting the projection alignment performance. This study provides a novel approach for visualizing vital information within a user’s field of view during the manufacturing processes at shops and offers considerations for implementing projection-based AR in practice.
    • Download: (2.883Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      2D Drawing Visualization Framework for Applying Projection-Based Augmented Reality in a Panelized Construction Manufacturing Facility: Proof of Concept

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4260111
    Collections
    • Journal of Computing in Civil Engineering

    Show full item record

    contributor authorSangJun Ahn
    contributor authorSangUk Han
    contributor authorMohamed Al-Hussein
    date accessioned2019-09-18T10:40:27Z
    date available2019-09-18T10:40:27Z
    date issued2019
    identifier other%28ASCE%29CP.1943-5487.0000843.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4260111
    description abstractProduct quality is recognized as a major benefit in industrialized construction because of the utilization of machines in manufacturing facilities. However, manual work continues to exist in complex assembly projects, which can potentially cause quality issues. To address such quality issues in industrialized manufacturing processes, projection-based augmented reality (AR) techniques have been applied in other industries (e.g., manufacturing), but on a smaller scale and at a short distance. To apply projection-based AR in the construction manufacturing facility, this paper proposes a framework that enables the user to perform a vision-based projection alignment using a projector and camera. The designated projection area determined by the user is marked out, the coordinates of which are then computed through segmentation and object-detection algorithms. After the acquisition of the markers’ coordinates is complete, a two-dimensional (2D) image is overlaid on the surface of the designated area using a projector by computing transformation matrix for the projection. To evaluate the potential performance in a field setting, the offset distances between the four corners of the projection boundary and the center of the markers are measured in various environments, such as at distances ranging from 5 to 8 m, and with different illumination conditions (i.e., low and high brightness) as well as in a manufacturing shop. The results indicate that average offset distances in all the experimental conditions are shorter than the factory tolerance level of 6.35 mm. Also, the statistical analysis reveals that both the distance and the illumination are significant factors affecting the projection alignment performance. This study provides a novel approach for visualizing vital information within a user’s field of view during the manufacturing processes at shops and offers considerations for implementing projection-based AR in practice.
    publisherAmerican Society of Civil Engineers
    title2D Drawing Visualization Framework for Applying Projection-Based Augmented Reality in a Panelized Construction Manufacturing Facility: Proof of Concept
    typeJournal Paper
    journal volume33
    journal issue5
    journal titleJournal of Computing in Civil Engineering
    identifier doi10.1061/(ASCE)CP.1943-5487.0000843
    page04019032
    treeJournal of Computing in Civil Engineering:;2019:;Volume ( 033 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian