YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Hybrid QPSO and SQP Algorithm with Homotopy Method for Optimal Control of Rapid Cooperative Rendezvous

    Source: Journal of Aerospace Engineering:;2019:;Volume ( 032 ):;issue: 004
    Author:
    Gang Liu
    ,
    Weiming Feng
    ,
    Kun Yang
    ,
    Junfeng Zhao
    DOI: 10.1061/(ASCE)AS.1943-5525.0001021
    Publisher: American Society of Civil Engineers
    Abstract: The fuel-optimal rapid cooperative rendezvous problem between two spacecraft under finite thrust, based on the indirect method, was investigated and converted into a two-point boundary value problem (TPBVP) in this study by using Pontryagin’s maximum principle. First, normalization processing of initial costate variables with unknown scopes was carried out to restrict them on a unit hypersphere. The quantum particle swarm optimization (QPSO) algorithm was used to preliminarily search for the initial costate variables of the high-dimensional energy-optimal problem, and then the results obtained were further corrected by the sequence quadratic programming (SQP) algorithm. The preceding combinatorial optimization algorithm with normalization technique considerably increases the probability of finding the approximate initial values of the globally optimal solution. Based on these modified initial costates, the smooth energy-optimal results were transitioned to the desirable nonsmooth fuel-optimal results by the homotopy method. Through the combination of the preceding effective techniques, the following difficulties were successfully overcome: (1) The optimal control was a strongly nonlinear problem under continuous high thrust; (2) in a cooperative rendezvous, the terminal rendezvous orbit was unknown and the parameter variables were doubled, leading to high-dimensional control equations; and (3) the narrow convergence domain of the shooting function made the shooting process extremely sensitive to the initial guess of the costates. The simulation results demonstrate not only the feasibility of the indirect method in solving fuel-optimal cooperative rendezvous, but also the superiority over another orbit transfer optimization method, the hybrid method.
    • Download: (4.982Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Hybrid QPSO and SQP Algorithm with Homotopy Method for Optimal Control of Rapid Cooperative Rendezvous

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4259766
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorGang Liu
    contributor authorWeiming Feng
    contributor authorKun Yang
    contributor authorJunfeng Zhao
    date accessioned2019-09-18T10:38:49Z
    date available2019-09-18T10:38:49Z
    date issued2019
    identifier other%28ASCE%29AS.1943-5525.0001021.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4259766
    description abstractThe fuel-optimal rapid cooperative rendezvous problem between two spacecraft under finite thrust, based on the indirect method, was investigated and converted into a two-point boundary value problem (TPBVP) in this study by using Pontryagin’s maximum principle. First, normalization processing of initial costate variables with unknown scopes was carried out to restrict them on a unit hypersphere. The quantum particle swarm optimization (QPSO) algorithm was used to preliminarily search for the initial costate variables of the high-dimensional energy-optimal problem, and then the results obtained were further corrected by the sequence quadratic programming (SQP) algorithm. The preceding combinatorial optimization algorithm with normalization technique considerably increases the probability of finding the approximate initial values of the globally optimal solution. Based on these modified initial costates, the smooth energy-optimal results were transitioned to the desirable nonsmooth fuel-optimal results by the homotopy method. Through the combination of the preceding effective techniques, the following difficulties were successfully overcome: (1) The optimal control was a strongly nonlinear problem under continuous high thrust; (2) in a cooperative rendezvous, the terminal rendezvous orbit was unknown and the parameter variables were doubled, leading to high-dimensional control equations; and (3) the narrow convergence domain of the shooting function made the shooting process extremely sensitive to the initial guess of the costates. The simulation results demonstrate not only the feasibility of the indirect method in solving fuel-optimal cooperative rendezvous, but also the superiority over another orbit transfer optimization method, the hybrid method.
    publisherAmerican Society of Civil Engineers
    titleHybrid QPSO and SQP Algorithm with Homotopy Method for Optimal Control of Rapid Cooperative Rendezvous
    typeJournal Paper
    journal volume32
    journal issue4
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/(ASCE)AS.1943-5525.0001021
    page04019030
    treeJournal of Aerospace Engineering:;2019:;Volume ( 032 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian