YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Study of Dynamic Effects of Iron Bacteria–Formed Biofilms on Pipeline Head Loss and Roughness

    Source: Journal of Water Resources Planning and Management:;2019:;Volume ( 145 ):;issue: 009
    Author:
    Jinzhe Gong
    ,
    Mason Erkelens
    ,
    Martin F. Lambert
    ,
    Peter Forward
    DOI: 10.1061/(ASCE)WR.1943-5452.0001105
    Publisher: American Society of Civil Engineers
    Abstract: This research investigated the dynamic effects of iron bacteria–formed biofilms and associated material accumulation on pipeline head loss and roughness for the Salt Interception Scheme (SIS) in South Australia. Two case studies were conducted in high-density polyethylene (HDPE) pipelines pumped with ground water that contained iron bacteria. The friction factor and equivalent pipe roughness were calibrated using the measured head loss and flow. The topological and microstructure of the material accumulation were studied, and deoxyribonucleic acid (DNA) analysis was used to reveal the bacteria that contributed to the material accumulation. The results showed that, for pipelines with various diameters but at similar initial flow velocity (Case study 1), the material accumulated faster and imposed more significant head loss in smaller pipes. For pipelines with the same size (Case study 2), the material accumulated faster and introduced higher head loss in pipes in which the flow velocities were higher. The conventional calibration approach that assumes a constant pipe diameter is not appropriate for pipes with excessive biofilm growth (as the case in this study). The approach that considers a 2-mm reduction in pipe effective diameter with every 1-mm increase in equivalent roughness produced friction factor and roughness results in reasonable physical ranges, and the calibrated equivalent roughness was generally consistent with the observed thickness of the accumulated material. The material accumulation was highly nonuniform, and comprised microbial iron nanowires. The nanowire had a helically coiled structure which was different from that of common brown compounds of oxidized iron. The bacteria Mariprofundus ferrooxydans were the producers of the iron nanowires. Overall, to limit the growth of iron biofilms and material accumulation in pipes used in the SIS, smaller pipes should be avoided, and use of the largest pipe diameter practical to achieve low flow velocity is recommended.
    • Download: (1.491Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Study of Dynamic Effects of Iron Bacteria–Formed Biofilms on Pipeline Head Loss and Roughness

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4259692
    Collections
    • Journal of Water Resources Planning and Management

    Show full item record

    contributor authorJinzhe Gong
    contributor authorMason Erkelens
    contributor authorMartin F. Lambert
    contributor authorPeter Forward
    date accessioned2019-09-18T10:38:26Z
    date available2019-09-18T10:38:26Z
    date issued2019
    identifier other%28ASCE%29WR.1943-5452.0001105.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4259692
    description abstractThis research investigated the dynamic effects of iron bacteria–formed biofilms and associated material accumulation on pipeline head loss and roughness for the Salt Interception Scheme (SIS) in South Australia. Two case studies were conducted in high-density polyethylene (HDPE) pipelines pumped with ground water that contained iron bacteria. The friction factor and equivalent pipe roughness were calibrated using the measured head loss and flow. The topological and microstructure of the material accumulation were studied, and deoxyribonucleic acid (DNA) analysis was used to reveal the bacteria that contributed to the material accumulation. The results showed that, for pipelines with various diameters but at similar initial flow velocity (Case study 1), the material accumulated faster and imposed more significant head loss in smaller pipes. For pipelines with the same size (Case study 2), the material accumulated faster and introduced higher head loss in pipes in which the flow velocities were higher. The conventional calibration approach that assumes a constant pipe diameter is not appropriate for pipes with excessive biofilm growth (as the case in this study). The approach that considers a 2-mm reduction in pipe effective diameter with every 1-mm increase in equivalent roughness produced friction factor and roughness results in reasonable physical ranges, and the calibrated equivalent roughness was generally consistent with the observed thickness of the accumulated material. The material accumulation was highly nonuniform, and comprised microbial iron nanowires. The nanowire had a helically coiled structure which was different from that of common brown compounds of oxidized iron. The bacteria Mariprofundus ferrooxydans were the producers of the iron nanowires. Overall, to limit the growth of iron biofilms and material accumulation in pipes used in the SIS, smaller pipes should be avoided, and use of the largest pipe diameter practical to achieve low flow velocity is recommended.
    publisherAmerican Society of Civil Engineers
    titleExperimental Study of Dynamic Effects of Iron Bacteria–Formed Biofilms on Pipeline Head Loss and Roughness
    typeJournal Paper
    journal volume145
    journal issue9
    journal titleJournal of Water Resources Planning and Management
    identifier doi10.1061/(ASCE)WR.1943-5452.0001105
    page04019038
    treeJournal of Water Resources Planning and Management:;2019:;Volume ( 145 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian