YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Triaxial Concrete Constitutive Model for Simulation of Composite Plate Shear Wall–Concrete Encased: THUC3

    Source: Journal of Structural Engineering:;2019:;Volume ( 145 ):;issue: 009
    Author:
    Jia-Ji Wang
    ,
    Cheng Liu
    ,
    Jian-Sheng Fan
    ,
    Jerome F. Hajjar
    ,
    Xin Nie
    DOI: 10.1061/(ASCE)ST.1943-541X.0002355
    Publisher: American Society of Civil Engineers
    Abstract: A new triaxial constitutive model [Tsinghua University Concrete Three-dimensional (THUC3)] of concrete was developed for high-fidelity finite-element (FE) simulation of composite plate shear wall–concrete encased (C-PSW/CE), which has been adopted as the lateral force-resisting system in numerous ultrahigh-rise buildings. In this formulation, a uniaxial constitutive model of concrete was introduced. The following five key features of concrete were included in the proposed model: compressive softening of unconfined and confined concrete, tension softening, pinching effect, shear softening, and strength degradation due to principal tensile strain. A triaxial constitutive law was also illustrated based on a fixed crack assumption. By assuming that the stress of the concrete can be decoupled in the crack coordinate system upon initial cracking, the triaxial constitutive law was assembled from the aforementioned uniaxial stress–strain relations. A new formulation is proposed to achieve strain decomposition and stress assembly in three-dimensional stress space. The numerical implementation of the stress update algorithm in an ABAQUS user material (UMAT) subroutine was illustrated. The modeling scheme and material constitutive laws of reinforcing bars, steel plates, and studs were also introduced. Subsequently, the developed triaxial constitutive model was validated at the material level by simulating the cyclic behavior of concrete and reinforced concrete (RC) specimens. The developed FE model showed good accuracy in simulating the hysteretic behavior, ultimate capacity, and residual strain in cyclic tensile loading. Two flexural critical C-PSW/CE tests, Specimens C30-5 and C40-5, were also completed and reported in this research, and 18 shear critical C-PSW/CE tests were collected from the existing literature. These tests were simulated to further validate the developed model at the structural level. Comparisons indicated that the proposed model showed a reasonable level of accuracy in terms of ultimate capacity, energy consumption, and failure mode. In addition, the modeling of studs by a nonlinear connector element is recommended based on comparisons between the test and FE results. The current AISC provisions for shear capacity of C-PSW/CE specimens were also evaluated relative to the computational and experimental results.
    • Download: (2.758Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Triaxial Concrete Constitutive Model for Simulation of Composite Plate Shear Wall–Concrete Encased: THUC3

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4259608
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorJia-Ji Wang
    contributor authorCheng Liu
    contributor authorJian-Sheng Fan
    contributor authorJerome F. Hajjar
    contributor authorXin Nie
    date accessioned2019-09-18T10:37:59Z
    date available2019-09-18T10:37:59Z
    date issued2019
    identifier other%28ASCE%29ST.1943-541X.0002355.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4259608
    description abstractA new triaxial constitutive model [Tsinghua University Concrete Three-dimensional (THUC3)] of concrete was developed for high-fidelity finite-element (FE) simulation of composite plate shear wall–concrete encased (C-PSW/CE), which has been adopted as the lateral force-resisting system in numerous ultrahigh-rise buildings. In this formulation, a uniaxial constitutive model of concrete was introduced. The following five key features of concrete were included in the proposed model: compressive softening of unconfined and confined concrete, tension softening, pinching effect, shear softening, and strength degradation due to principal tensile strain. A triaxial constitutive law was also illustrated based on a fixed crack assumption. By assuming that the stress of the concrete can be decoupled in the crack coordinate system upon initial cracking, the triaxial constitutive law was assembled from the aforementioned uniaxial stress–strain relations. A new formulation is proposed to achieve strain decomposition and stress assembly in three-dimensional stress space. The numerical implementation of the stress update algorithm in an ABAQUS user material (UMAT) subroutine was illustrated. The modeling scheme and material constitutive laws of reinforcing bars, steel plates, and studs were also introduced. Subsequently, the developed triaxial constitutive model was validated at the material level by simulating the cyclic behavior of concrete and reinforced concrete (RC) specimens. The developed FE model showed good accuracy in simulating the hysteretic behavior, ultimate capacity, and residual strain in cyclic tensile loading. Two flexural critical C-PSW/CE tests, Specimens C30-5 and C40-5, were also completed and reported in this research, and 18 shear critical C-PSW/CE tests were collected from the existing literature. These tests were simulated to further validate the developed model at the structural level. Comparisons indicated that the proposed model showed a reasonable level of accuracy in terms of ultimate capacity, energy consumption, and failure mode. In addition, the modeling of studs by a nonlinear connector element is recommended based on comparisons between the test and FE results. The current AISC provisions for shear capacity of C-PSW/CE specimens were also evaluated relative to the computational and experimental results.
    publisherAmerican Society of Civil Engineers
    titleTriaxial Concrete Constitutive Model for Simulation of Composite Plate Shear Wall–Concrete Encased: THUC3
    typeJournal Paper
    journal volume145
    journal issue9
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002355
    page04019088
    treeJournal of Structural Engineering:;2019:;Volume ( 145 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian