YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Determining the Flexural Capacity of Long-Span Post-Tensioned LVL Timber Beams

    Source: Journal of Structural Engineering:;2019:;Volume ( 145 ):;issue: 007
    Author:
    Wouter van Beerschoten
    ,
    Gabriele Granello
    ,
    Alessandro Palermo
    ,
    David Carradine
    DOI: 10.1061/(ASCE)ST.1943-541X.0002354
    Publisher: American Society of Civil Engineers
    Abstract: Post-tensioning can be used to introduce a precamber in timber beams, similar to concrete applications, resulting in decreased deflections and, hence, optimizing material usage. However, the amount of tendon post-tensioning or eccentricity can be significantly higher than in concrete applications because of the higher tensile strength of timber. Therefore, the secondary forces (generated by the tendon elongation) can increase the ultimate capacity of the post-tensioned member. To investigate these potential benefits, experimental testing to failure was carried out on four full-scale laminated veneer lumber (LVL) beam specimens, three of which were post-tensioned with unbonded tendons. A three-dimensional finite-element-model approach was proposed to simulate the behavior of the specimens. An analytical model was also developed to calculate the static response of the beams for a preliminary design by hand. Both modeling approaches, i.e., numerical and analytical, provided good results compared with the experimental data. Results indicated that post-tensioning can increase the load-carrying capacity of timber beams at the ultimate limit state up to 56%, especially if draped tendon profiles are used and the top flange of the beam is properly dimensioned to resist combined compression stresses from post-tensioning and bending moments.
    • Download: (2.676Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Determining the Flexural Capacity of Long-Span Post-Tensioned LVL Timber Beams

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4259607
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorWouter van Beerschoten
    contributor authorGabriele Granello
    contributor authorAlessandro Palermo
    contributor authorDavid Carradine
    date accessioned2019-09-18T10:37:59Z
    date available2019-09-18T10:37:59Z
    date issued2019
    identifier other%28ASCE%29ST.1943-541X.0002354.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4259607
    description abstractPost-tensioning can be used to introduce a precamber in timber beams, similar to concrete applications, resulting in decreased deflections and, hence, optimizing material usage. However, the amount of tendon post-tensioning or eccentricity can be significantly higher than in concrete applications because of the higher tensile strength of timber. Therefore, the secondary forces (generated by the tendon elongation) can increase the ultimate capacity of the post-tensioned member. To investigate these potential benefits, experimental testing to failure was carried out on four full-scale laminated veneer lumber (LVL) beam specimens, three of which were post-tensioned with unbonded tendons. A three-dimensional finite-element-model approach was proposed to simulate the behavior of the specimens. An analytical model was also developed to calculate the static response of the beams for a preliminary design by hand. Both modeling approaches, i.e., numerical and analytical, provided good results compared with the experimental data. Results indicated that post-tensioning can increase the load-carrying capacity of timber beams at the ultimate limit state up to 56%, especially if draped tendon profiles are used and the top flange of the beam is properly dimensioned to resist combined compression stresses from post-tensioning and bending moments.
    publisherAmerican Society of Civil Engineers
    titleDetermining the Flexural Capacity of Long-Span Post-Tensioned LVL Timber Beams
    typeJournal Paper
    journal volume145
    journal issue7
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002354
    page04019067
    treeJournal of Structural Engineering:;2019:;Volume ( 145 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian