YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Predicting Time-Dependent Behavior of Post-Tensioned Concrete Beams: Discrete Multiscale Multiphysics Formulation

    Source: Journal of Structural Engineering:;2019:;Volume ( 145 ):;issue: 007
    Author:
    Mohammed Abdellatef
    ,
    Jan Vorel
    ,
    Roman Wan-Wendner
    ,
    Mohammed Alnaggar
    DOI: 10.1061/(ASCE)ST.1943-541X.0002345
    Publisher: American Society of Civil Engineers
    Abstract: Time-dependent deformations, including creep and shrinkage, are essential factors that govern multiple design aspects of prestressed/post-tensioned concrete structures. These include (but are not limited to) time to initial post-tensioning, prestressing losses, time to shoring removal, and serviceability in general. Excessive creep and shrinkage deformations can render a structure unusable aesthetically or even lead to eventual collapse. This is becoming more and more important because many of the recently developed advanced cementitious materials are characterized by larger and more evident long-term deformations (e.g., prolonged self-desiccation in high-strength concrete). This paper presents the prediction of long-term deformations of post-tensioned concrete beams due to creep, shrinkage, and steel relaxation under sustained loading and varying environmental conditions. This is achieved by using the lattice discrete particle model (LDPM) framework, in which time-dependent deformations are imposed at the coarse aggregate level following an explicit solidification-microprestress formulation and a code-based model for steel relaxation. Time-dependent deformations are formulated as functions of spatial and temporal evolutions of temperature, humidity, and cementitious materials’ hydration within the concrete mesostructure, which are modeled by using a semidiscrete multiphysics hygro-thermo-chemical (HTC) model. The coupling between the different models allows for capturing the time-dependent deformations relevant to the different design stages of post-tensioned concrete beams. To show the predictive capabilities of the proposed multiscale physics-based framework, all model parameters are calibrated by simulating the response of companion specimens (lab scale) only, then used to predict blindly the behavior of full-scale post-tensioned beams. The predictions show very good agreement with experimental data.
    • Download: (1.750Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Predicting Time-Dependent Behavior of Post-Tensioned Concrete Beams: Discrete Multiscale Multiphysics Formulation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4259597
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorMohammed Abdellatef
    contributor authorJan Vorel
    contributor authorRoman Wan-Wendner
    contributor authorMohammed Alnaggar
    date accessioned2019-09-18T10:37:55Z
    date available2019-09-18T10:37:55Z
    date issued2019
    identifier other%28ASCE%29ST.1943-541X.0002345.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4259597
    description abstractTime-dependent deformations, including creep and shrinkage, are essential factors that govern multiple design aspects of prestressed/post-tensioned concrete structures. These include (but are not limited to) time to initial post-tensioning, prestressing losses, time to shoring removal, and serviceability in general. Excessive creep and shrinkage deformations can render a structure unusable aesthetically or even lead to eventual collapse. This is becoming more and more important because many of the recently developed advanced cementitious materials are characterized by larger and more evident long-term deformations (e.g., prolonged self-desiccation in high-strength concrete). This paper presents the prediction of long-term deformations of post-tensioned concrete beams due to creep, shrinkage, and steel relaxation under sustained loading and varying environmental conditions. This is achieved by using the lattice discrete particle model (LDPM) framework, in which time-dependent deformations are imposed at the coarse aggregate level following an explicit solidification-microprestress formulation and a code-based model for steel relaxation. Time-dependent deformations are formulated as functions of spatial and temporal evolutions of temperature, humidity, and cementitious materials’ hydration within the concrete mesostructure, which are modeled by using a semidiscrete multiphysics hygro-thermo-chemical (HTC) model. The coupling between the different models allows for capturing the time-dependent deformations relevant to the different design stages of post-tensioned concrete beams. To show the predictive capabilities of the proposed multiscale physics-based framework, all model parameters are calibrated by simulating the response of companion specimens (lab scale) only, then used to predict blindly the behavior of full-scale post-tensioned beams. The predictions show very good agreement with experimental data.
    publisherAmerican Society of Civil Engineers
    titlePredicting Time-Dependent Behavior of Post-Tensioned Concrete Beams: Discrete Multiscale Multiphysics Formulation
    typeJournal Paper
    journal volume145
    journal issue7
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002345
    page04019060
    treeJournal of Structural Engineering:;2019:;Volume ( 145 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian