YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Performance of Block-Out Connections at the Base of Steel Moment Frames

    Source: Journal of Structural Engineering:;2019:;Volume ( 145 ):;issue: 007
    Author:
    Kevin N. Hanks
    ,
    Paul W. Richards
    DOI: 10.1061/(ASCE)ST.1943-541X.0002333
    Publisher: American Society of Civil Engineers
    Abstract: In a block-out connection, a steel column is connected to a footing through an opening (block-out) in a slab-on-grade that is later filled with unreinforced concrete. In design, engineers generally neglect any beneficial effects of the block-out concrete. The objective of this study is to experimentally quantify the effect of block-out concrete on the lower-bound flexural strength and stiffness of block-out connections at the base of steel moment frames. Eight specimens were tested with varying column shape, block-out depth, and baseplate/anchor rod designs. The block-out concrete increased the connection flexural strengths by 69%–91% for block-out depths that were 1.2–1.5 times the column depth. A strength model proposed in previous work was found to reasonably predict the flexural strength, accounting for the effects of block-out concrete. With regard to stiffness, specimens with block-out concrete depths at least 1.15 times the column depth could be accurately modeled as fixed at the top-of-footing elevation.
    • Download: (1.030Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Performance of Block-Out Connections at the Base of Steel Moment Frames

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4259584
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorKevin N. Hanks
    contributor authorPaul W. Richards
    date accessioned2019-09-18T10:37:51Z
    date available2019-09-18T10:37:51Z
    date issued2019
    identifier other%28ASCE%29ST.1943-541X.0002333.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4259584
    description abstractIn a block-out connection, a steel column is connected to a footing through an opening (block-out) in a slab-on-grade that is later filled with unreinforced concrete. In design, engineers generally neglect any beneficial effects of the block-out concrete. The objective of this study is to experimentally quantify the effect of block-out concrete on the lower-bound flexural strength and stiffness of block-out connections at the base of steel moment frames. Eight specimens were tested with varying column shape, block-out depth, and baseplate/anchor rod designs. The block-out concrete increased the connection flexural strengths by 69%–91% for block-out depths that were 1.2–1.5 times the column depth. A strength model proposed in previous work was found to reasonably predict the flexural strength, accounting for the effects of block-out concrete. With regard to stiffness, specimens with block-out concrete depths at least 1.15 times the column depth could be accurately modeled as fixed at the top-of-footing elevation.
    publisherAmerican Society of Civil Engineers
    titleExperimental Performance of Block-Out Connections at the Base of Steel Moment Frames
    typeJournal Paper
    journal volume145
    journal issue7
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002333
    page04019057
    treeJournal of Structural Engineering:;2019:;Volume ( 145 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian