YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Manufacturing of Wood–Plastic Composite Boards and Their Mechanical and Structural Characteristics

    Source: Journal of Materials in Civil Engineering:;2019:;Volume ( 031 ):;issue: 010
    Author:
    Passant Youssef
    ,
    Khaled Zahran
    ,
    Khaled Nassar
    ,
    Mohamed Darwish
    ,
    Salah El Haggar
    DOI: 10.1061/(ASCE)MT.1943-5533.0002881
    Publisher: American Society of Civil Engineers
    Abstract: Engineered wood products including wood–plastic composites have been manufactured with different mix designs and different manufacturing techniques within the last years. However, there are still some materials that are not used to manufacture such composites, like recycled high-density polyethylene and camphor wood, although they are available in good quantities as industrial by-products. In this research, wood–plastic composite (WPC) panels were manufactured from high-density polyethylene (HDPE) plastic waste at 20%, 25%, 30%, 35%, and 40% of total weight together with camphor wood waste. Physical, mechanical, and structural properties of the panels were studied and compared according to current standards. The results showed that the properties of the manufactured engineered wood product were significantly affected by the kind and percentage of the wood fiber and plastic waste. Ultimate values of the bending strength of the WPC panels as well as the maximum values of Young’s modulus were reached at 40% plastic content. The water absorption of the panels was found to be inversely related to the HDPE content. The bending strength of the panels with recycled HDPE was less than in the case of using virgin HDPE. The water uptake for WPC panels when using recycled HDPE was higher than the water uptake when using virgin HDPE. Furthermore, the compressive strength of the samples was directly related to its plastic content; it was comparatively low for recycled HDPE panels compared to panels using virgin HDPE.
    • Download: (1.032Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Manufacturing of Wood–Plastic Composite Boards and Their Mechanical and Structural Characteristics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4259525
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorPassant Youssef
    contributor authorKhaled Zahran
    contributor authorKhaled Nassar
    contributor authorMohamed Darwish
    contributor authorSalah El Haggar
    date accessioned2019-09-18T10:37:30Z
    date available2019-09-18T10:37:30Z
    date issued2019
    identifier other%28ASCE%29MT.1943-5533.0002881.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4259525
    description abstractEngineered wood products including wood–plastic composites have been manufactured with different mix designs and different manufacturing techniques within the last years. However, there are still some materials that are not used to manufacture such composites, like recycled high-density polyethylene and camphor wood, although they are available in good quantities as industrial by-products. In this research, wood–plastic composite (WPC) panels were manufactured from high-density polyethylene (HDPE) plastic waste at 20%, 25%, 30%, 35%, and 40% of total weight together with camphor wood waste. Physical, mechanical, and structural properties of the panels were studied and compared according to current standards. The results showed that the properties of the manufactured engineered wood product were significantly affected by the kind and percentage of the wood fiber and plastic waste. Ultimate values of the bending strength of the WPC panels as well as the maximum values of Young’s modulus were reached at 40% plastic content. The water absorption of the panels was found to be inversely related to the HDPE content. The bending strength of the panels with recycled HDPE was less than in the case of using virgin HDPE. The water uptake for WPC panels when using recycled HDPE was higher than the water uptake when using virgin HDPE. Furthermore, the compressive strength of the samples was directly related to its plastic content; it was comparatively low for recycled HDPE panels compared to panels using virgin HDPE.
    publisherAmerican Society of Civil Engineers
    titleManufacturing of Wood–Plastic Composite Boards and Their Mechanical and Structural Characteristics
    typeJournal Paper
    journal volume31
    journal issue10
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0002881
    page04019232
    treeJournal of Materials in Civil Engineering:;2019:;Volume ( 031 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian