YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Computational Evaluation of Effects of Fiber Shape on Transverse Properties of Polymer Composites Considering Voids under Dynamic Loading

    Source: Journal of Aerospace Engineering:;2019:;Volume ( 032 ):;issue: 004
    Author:
    Meng Wang
    ,
    Peiwei Zhang
    ,
    Qingguo Fei
    DOI: 10.1061/(ASCE)AS.1943-5525.0001037
    Publisher: American Society of Civil Engineers
    Abstract: Mechanical properties of composites are dependent on the constituents’ properties and microstructure. To numerically reveal the effects of fiber shape on the transverse dynamic properties of polymer composites, unit cell models considering different fiber shapes are established with the finite-element method and a polymer’s rate-dependent behavior is described using the modified Bodner-Partom model. There are some other micro characteristics including fiber distribution patterns and voids that have important influences on composites’ transverse behaviors. Models with different regular fiber distribution patterns were analyzed to evaluate the influences of fiber distribution on the response prediction. Then, to evaluate the effects of voids, results from models with different void distribution patterns, void sizes, and void shapes were compared. It shows that among all models established, the highest transverse flow stress value comes from the square-shaped-fiber model without considering the change of fiber cross-section orientation and voids that result in significant reduction in the responses. The flow stress values of most noncircular-fiber models are higher than that of the circular-shaped-fiber model. For each kind of fiber distribution pattern, the flow stress value from the model with square-shaped fibers was the highest. The location, size, modeling method, and shape of the voids affect responses of the models with different fiber shapes to different degrees.
    • Download: (13.06Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Computational Evaluation of Effects of Fiber Shape on Transverse Properties of Polymer Composites Considering Voids under Dynamic Loading

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4259514
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorMeng Wang
    contributor authorPeiwei Zhang
    contributor authorQingguo Fei
    date accessioned2019-09-18T10:37:26Z
    date available2019-09-18T10:37:26Z
    date issued2019
    identifier other%28ASCE%29AS.1943-5525.0001037.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4259514
    description abstractMechanical properties of composites are dependent on the constituents’ properties and microstructure. To numerically reveal the effects of fiber shape on the transverse dynamic properties of polymer composites, unit cell models considering different fiber shapes are established with the finite-element method and a polymer’s rate-dependent behavior is described using the modified Bodner-Partom model. There are some other micro characteristics including fiber distribution patterns and voids that have important influences on composites’ transverse behaviors. Models with different regular fiber distribution patterns were analyzed to evaluate the influences of fiber distribution on the response prediction. Then, to evaluate the effects of voids, results from models with different void distribution patterns, void sizes, and void shapes were compared. It shows that among all models established, the highest transverse flow stress value comes from the square-shaped-fiber model without considering the change of fiber cross-section orientation and voids that result in significant reduction in the responses. The flow stress values of most noncircular-fiber models are higher than that of the circular-shaped-fiber model. For each kind of fiber distribution pattern, the flow stress value from the model with square-shaped fibers was the highest. The location, size, modeling method, and shape of the voids affect responses of the models with different fiber shapes to different degrees.
    publisherAmerican Society of Civil Engineers
    titleComputational Evaluation of Effects of Fiber Shape on Transverse Properties of Polymer Composites Considering Voids under Dynamic Loading
    typeJournal Paper
    journal volume32
    journal issue4
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/(ASCE)AS.1943-5525.0001037
    page04019049
    treeJournal of Aerospace Engineering:;2019:;Volume ( 032 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian