YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Assessing Moisture Damage of Asphalt-Aggregate Systems Using Principles of Thermodynamics: Effects of Recycled Materials and Binder Aging

    Source: Journal of Materials in Civil Engineering:;2019:;Volume ( 031 ):;issue: 009
    Author:
    Zaher Al Basiouni Al Masri
    ,
    Amir Alarab
    ,
    Ghassan Chehab
    ,
    Ali Tehrani-Bagha
    DOI: 10.1061/(ASCE)MT.1943-5533.0002846
    Publisher: American Society of Civil Engineers
    Abstract: This study utilized the concept of surface free energy to assess the effect of binder aging, types of aggregate, and recycled mineral fillers on the moisture susceptibility of asphalt-aggregate systems. A total of 12 combinations of asphalt mastic and aggregates were evaluated. The surface free energy for each mastic type was determined based on contact angle measurements obtained using the sessile drop method. Next, the work of adhesion and the work of debonding for all combinations of asphalt mastics and aggregates were quantified based on their surface free energy components. The energy ratio parameter was used to assess the resistance to moisture damage of each mastic-aggregate combination. Moreover, mixes with different asphalt aging conditions—nonaged, short-term aged, and long-term aged—were evaluated to determine the effect of asphalt aging on moisture susceptibility. The results confirmed that limestone aggregates are less susceptible to moisture damage than granite aggregates. Furthermore, the use of recycled mineral fillers, mainly from recycled concrete aggregates (RCA) and recycled asphalt pavement (RAP), significantly reduces the resistance of asphalt-aggregate systems to moisture damage. Last, the results revealed that asphalt-aggregate systems become less able to resist moisture damage as the asphalt ages.
    • Download: (4.874Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Assessing Moisture Damage of Asphalt-Aggregate Systems Using Principles of Thermodynamics: Effects of Recycled Materials and Binder Aging

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4259488
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorZaher Al Basiouni Al Masri
    contributor authorAmir Alarab
    contributor authorGhassan Chehab
    contributor authorAli Tehrani-Bagha
    date accessioned2019-09-18T10:37:19Z
    date available2019-09-18T10:37:19Z
    date issued2019
    identifier other%28ASCE%29MT.1943-5533.0002846.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4259488
    description abstractThis study utilized the concept of surface free energy to assess the effect of binder aging, types of aggregate, and recycled mineral fillers on the moisture susceptibility of asphalt-aggregate systems. A total of 12 combinations of asphalt mastic and aggregates were evaluated. The surface free energy for each mastic type was determined based on contact angle measurements obtained using the sessile drop method. Next, the work of adhesion and the work of debonding for all combinations of asphalt mastics and aggregates were quantified based on their surface free energy components. The energy ratio parameter was used to assess the resistance to moisture damage of each mastic-aggregate combination. Moreover, mixes with different asphalt aging conditions—nonaged, short-term aged, and long-term aged—were evaluated to determine the effect of asphalt aging on moisture susceptibility. The results confirmed that limestone aggregates are less susceptible to moisture damage than granite aggregates. Furthermore, the use of recycled mineral fillers, mainly from recycled concrete aggregates (RCA) and recycled asphalt pavement (RAP), significantly reduces the resistance of asphalt-aggregate systems to moisture damage. Last, the results revealed that asphalt-aggregate systems become less able to resist moisture damage as the asphalt ages.
    publisherAmerican Society of Civil Engineers
    titleAssessing Moisture Damage of Asphalt-Aggregate Systems Using Principles of Thermodynamics: Effects of Recycled Materials and Binder Aging
    typeJournal Paper
    journal volume31
    journal issue9
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0002846
    page04019190
    treeJournal of Materials in Civil Engineering:;2019:;Volume ( 031 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian