YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modeling Bond Behavior of Lap-Spliced Enamel-Coated Rebar

    Source: Journal of Materials in Civil Engineering:;2019:;Volume ( 031 ):;issue: 009
    Author:
    Chenglin Wu
    DOI: 10.1061/(ASCE)MT.1943-5533.0002829
    Publisher: American Society of Civil Engineers
    Abstract: Bond behavior of coated rebar spliced in concrete has gained significant attention due to the modified interfacial behavior between the coated surface and cementitious materials. This paper proposes an analytical model to describe the bond behavior of enamel-coated rebar spliced in concrete beams. This model considers the strain-softening behavior of concrete in the stress transfer mechanism between spliced rebar and concrete. The local bond strength caused by rebar characteristics and the effect of enamel coating was considered through the unified local bond model. The coupled stress bursting pressure generated by the splice was analyzed using equivalent stress analysis. The proposed model was validated by comparison with the experimental results of 24 concrete beams reinforced with both uncoated and coated rebar. The proposed theoretical analysis and model provide an efficient analytical approach of translating local bond behavior of coated reinforcement to the global bond behavior of lap splices in RC beams. The results indicated a significant coating effect on the load-strain responses of lap splices under tension forces.
    • Download: (2.010Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modeling Bond Behavior of Lap-Spliced Enamel-Coated Rebar

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4259468
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorChenglin Wu
    date accessioned2019-09-18T10:37:13Z
    date available2019-09-18T10:37:13Z
    date issued2019
    identifier other%28ASCE%29MT.1943-5533.0002829.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4259468
    description abstractBond behavior of coated rebar spliced in concrete has gained significant attention due to the modified interfacial behavior between the coated surface and cementitious materials. This paper proposes an analytical model to describe the bond behavior of enamel-coated rebar spliced in concrete beams. This model considers the strain-softening behavior of concrete in the stress transfer mechanism between spliced rebar and concrete. The local bond strength caused by rebar characteristics and the effect of enamel coating was considered through the unified local bond model. The coupled stress bursting pressure generated by the splice was analyzed using equivalent stress analysis. The proposed model was validated by comparison with the experimental results of 24 concrete beams reinforced with both uncoated and coated rebar. The proposed theoretical analysis and model provide an efficient analytical approach of translating local bond behavior of coated reinforcement to the global bond behavior of lap splices in RC beams. The results indicated a significant coating effect on the load-strain responses of lap splices under tension forces.
    publisherAmerican Society of Civil Engineers
    titleModeling Bond Behavior of Lap-Spliced Enamel-Coated Rebar
    typeJournal Paper
    journal volume31
    journal issue9
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0002829
    page04019187
    treeJournal of Materials in Civil Engineering:;2019:;Volume ( 031 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian