YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Hydration, Pore Solution, and Porosity of Cementitious Pastes Made with Seawater

    Source: Journal of Materials in Civil Engineering:;2019:;Volume ( 031 ):;issue: 008
    Author:
    Luca Montanari
    ,
    Prannoy Suraneni
    ,
    Marisol Tsui-Chang
    ,
    Morteza Khatibmasjedi
    ,
    Usama Ebead
    ,
    Jason Weiss
    ,
    Antonio Nanni
    DOI: 10.1061/(ASCE)MT.1943-5533.0002818
    Publisher: American Society of Civil Engineers
    Abstract: Unreinforced concrete or concrete reinforced with noncorrosive reinforcement could potentially be mixed with seawater in locations where potable water is scarce. A fundamental understanding of the properties of concrete mixed with seawater is therefore essential. This paper analyzes the hydration kinetics, hydrate phases, pore solution, and porosity of cementitious pastes made with seawater and compares these results with the corresponding ones from pastes made with deionized water. Pastes were prepared with cement and with a 20% mass replacement of the cement with fly ash. Isothermal calorimetry (to study hydration kinetics), thermogravimetric analysis (to study the hydrated phase assemblage), X-ray fluorescence (to determine pore solution composition and electrical resistivity), and dynamic vapor sorption (to determine the pore size distribution) were performed on the paste samples. Seawater accelerates hydration kinetics at an early age; however, this effect is negligible at later ages. Friedel’s salt formation in systems with seawater at later ages is negligible [0.4% (by mass of paste) at 91 days]. The primary difference between the hydrated phases of pastes made with seawater and those made with deionized water appears to be the absorption of chloride in the calcium silicate hydrate. The pore solution in pastes made with seawater has higher sodium, chloride, and hydroxide ion concentrations. The concentrations of sodium, potassium, and hydroxide ions in pore solutions are lower in pastes with fly ash compared to pastes without fly ash. Pastes with seawater show a lower electrical resistivity than pastes with deionized water due to the higher ionic concentrations. Paste with seawater has a slightly finer pore structure compared to paste with deionized water.
    • Download: (1.880Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Hydration, Pore Solution, and Porosity of Cementitious Pastes Made with Seawater

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4259456
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorLuca Montanari
    contributor authorPrannoy Suraneni
    contributor authorMarisol Tsui-Chang
    contributor authorMorteza Khatibmasjedi
    contributor authorUsama Ebead
    contributor authorJason Weiss
    contributor authorAntonio Nanni
    date accessioned2019-09-18T10:37:09Z
    date available2019-09-18T10:37:09Z
    date issued2019
    identifier other%28ASCE%29MT.1943-5533.0002818.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4259456
    description abstractUnreinforced concrete or concrete reinforced with noncorrosive reinforcement could potentially be mixed with seawater in locations where potable water is scarce. A fundamental understanding of the properties of concrete mixed with seawater is therefore essential. This paper analyzes the hydration kinetics, hydrate phases, pore solution, and porosity of cementitious pastes made with seawater and compares these results with the corresponding ones from pastes made with deionized water. Pastes were prepared with cement and with a 20% mass replacement of the cement with fly ash. Isothermal calorimetry (to study hydration kinetics), thermogravimetric analysis (to study the hydrated phase assemblage), X-ray fluorescence (to determine pore solution composition and electrical resistivity), and dynamic vapor sorption (to determine the pore size distribution) were performed on the paste samples. Seawater accelerates hydration kinetics at an early age; however, this effect is negligible at later ages. Friedel’s salt formation in systems with seawater at later ages is negligible [0.4% (by mass of paste) at 91 days]. The primary difference between the hydrated phases of pastes made with seawater and those made with deionized water appears to be the absorption of chloride in the calcium silicate hydrate. The pore solution in pastes made with seawater has higher sodium, chloride, and hydroxide ion concentrations. The concentrations of sodium, potassium, and hydroxide ions in pore solutions are lower in pastes with fly ash compared to pastes without fly ash. Pastes with seawater show a lower electrical resistivity than pastes with deionized water due to the higher ionic concentrations. Paste with seawater has a slightly finer pore structure compared to paste with deionized water.
    publisherAmerican Society of Civil Engineers
    titleHydration, Pore Solution, and Porosity of Cementitious Pastes Made with Seawater
    typeJournal Paper
    journal volume31
    journal issue8
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0002818
    page04019154
    treeJournal of Materials in Civil Engineering:;2019:;Volume ( 031 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian