YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Study of Geopolymer Binder Synthesized with Copper Mine Tailings and Low-Calcium Copper Slag

    Source: Journal of Materials in Civil Engineering:;2019:;Volume ( 031 ):;issue: 008
    Author:
    Lino Manjarrez
    ,
    Arash Nikvar-Hassani
    ,
    Rasoul Shadnia
    ,
    Lianyang Zhang
    DOI: 10.1061/(ASCE)MT.1943-5533.0002808
    Publisher: American Society of Civil Engineers
    Abstract: The use of waste materials in construction is gaining increasing interest due to the development of new technologies. This paper presents an experimental study on geopolymer binder produced with copper mine tailings (MT) and low-calcium slag (SG) for potential applications in road construction. The study systematically investigated the effects of water-to-solid ratio (w/s), SG content (0%, 25%, and 50%), sodium hydroxide (NaOH) concentration (5, 10 and 15 M), and the ratio of sodium silicate (SS) to sodium hydroxide (0.0, 0.5, 1.0, and 1.5) on the unconfined compressive strength (UCS) of synthesized geopolymer binder specimens. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) analyses were also performed to characterize the microstructure and phase composition of the geopolymer specimens. The results show that the inclusion of SG improves UCS and reduces the initial water content required for achieving a certain workability of the geopolymer paste. The geopolymer binder specimens prepared at 50% SG, 10-M NaOH, SS/NaOH=1.0, and cured at 60°C for seven days reached the highest UCS of 23.5 MPa. The geopolymer paste prepared at 50% SG, 15-M NaOH concentration, and SS/NaOH ratios of 0.5 and 1.0 showed flash setting, which led to poorer quality specimens and lower UCS. The SEM, EDS, and XRD analyses clearly showed the participation of iron dissolved from SG in the formation of geopolymer gels. This research helps promote the reuse of MT and SG through geopolymerization and contributes to the knowledge of geopolymer materials.
    • Download: (3.740Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Study of Geopolymer Binder Synthesized with Copper Mine Tailings and Low-Calcium Copper Slag

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4259444
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorLino Manjarrez
    contributor authorArash Nikvar-Hassani
    contributor authorRasoul Shadnia
    contributor authorLianyang Zhang
    date accessioned2019-09-18T10:37:05Z
    date available2019-09-18T10:37:05Z
    date issued2019
    identifier other%28ASCE%29MT.1943-5533.0002808.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4259444
    description abstractThe use of waste materials in construction is gaining increasing interest due to the development of new technologies. This paper presents an experimental study on geopolymer binder produced with copper mine tailings (MT) and low-calcium slag (SG) for potential applications in road construction. The study systematically investigated the effects of water-to-solid ratio (w/s), SG content (0%, 25%, and 50%), sodium hydroxide (NaOH) concentration (5, 10 and 15 M), and the ratio of sodium silicate (SS) to sodium hydroxide (0.0, 0.5, 1.0, and 1.5) on the unconfined compressive strength (UCS) of synthesized geopolymer binder specimens. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) analyses were also performed to characterize the microstructure and phase composition of the geopolymer specimens. The results show that the inclusion of SG improves UCS and reduces the initial water content required for achieving a certain workability of the geopolymer paste. The geopolymer binder specimens prepared at 50% SG, 10-M NaOH, SS/NaOH=1.0, and cured at 60°C for seven days reached the highest UCS of 23.5 MPa. The geopolymer paste prepared at 50% SG, 15-M NaOH concentration, and SS/NaOH ratios of 0.5 and 1.0 showed flash setting, which led to poorer quality specimens and lower UCS. The SEM, EDS, and XRD analyses clearly showed the participation of iron dissolved from SG in the formation of geopolymer gels. This research helps promote the reuse of MT and SG through geopolymerization and contributes to the knowledge of geopolymer materials.
    publisherAmerican Society of Civil Engineers
    titleExperimental Study of Geopolymer Binder Synthesized with Copper Mine Tailings and Low-Calcium Copper Slag
    typeJournal Paper
    journal volume31
    journal issue8
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0002808
    page04019156
    treeJournal of Materials in Civil Engineering:;2019:;Volume ( 031 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian