YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Performance of Concrete-Filled Steel Tube Bridge Columns Subjected to Vehicle Collision

    Source: Journal of Bridge Engineering:;2019:;Volume ( 024 ):;issue: 008
    Author:
    Dikshant Saini
    ,
    Behrouz Shafei
    DOI: 10.1061/(ASCE)BE.1943-5592.0001439
    Publisher: American Society of Civil Engineers
    Abstract: Collision of vehicles into RC bridge columns can result in significant damage to individual bridge components, leading to partial or full collapse of the entire bridge. Among various alternatives to RC columns, concrete-filled steel tubes (CFSTs) have received growing attention because of their rapid construction, reduced labor requirement, and reasonable material cost. Despite the promise of this alternative, however, there is a gap in the existing literature concerning the measures that can be used for the analysis and design of this important category of bridge columns subjected to impact loads. To address this gap, a detailed investigation is conducted in the current study, using a set of impact simulations. For this purpose, representative finite-element (FE) models are developed and validated with the experimental test results. To make a direct comparison possible, the numerical simulations include both CFST and RC columns under a range of vehicle impact scenarios. The structural performance is evaluated using a comprehensive set of measures, including peak dynamic force (PDF) and equivalent static force (ESF). On establishing the necessary metrics, the current study provides a systematic effort to examine the contribution of the main analysis and design parameters to the impact response of the columns under consideration. Based on the simulation results, the sufficiency of the current specifications is evaluated, and a generalized equation is proposed to predict the ESF for CFST columns.
    • Download: (2.389Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Performance of Concrete-Filled Steel Tube Bridge Columns Subjected to Vehicle Collision

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4259440
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorDikshant Saini
    contributor authorBehrouz Shafei
    date accessioned2019-09-18T10:37:03Z
    date available2019-09-18T10:37:03Z
    date issued2019
    identifier other%28ASCE%29BE.1943-5592.0001439.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4259440
    description abstractCollision of vehicles into RC bridge columns can result in significant damage to individual bridge components, leading to partial or full collapse of the entire bridge. Among various alternatives to RC columns, concrete-filled steel tubes (CFSTs) have received growing attention because of their rapid construction, reduced labor requirement, and reasonable material cost. Despite the promise of this alternative, however, there is a gap in the existing literature concerning the measures that can be used for the analysis and design of this important category of bridge columns subjected to impact loads. To address this gap, a detailed investigation is conducted in the current study, using a set of impact simulations. For this purpose, representative finite-element (FE) models are developed and validated with the experimental test results. To make a direct comparison possible, the numerical simulations include both CFST and RC columns under a range of vehicle impact scenarios. The structural performance is evaluated using a comprehensive set of measures, including peak dynamic force (PDF) and equivalent static force (ESF). On establishing the necessary metrics, the current study provides a systematic effort to examine the contribution of the main analysis and design parameters to the impact response of the columns under consideration. Based on the simulation results, the sufficiency of the current specifications is evaluated, and a generalized equation is proposed to predict the ESF for CFST columns.
    publisherAmerican Society of Civil Engineers
    titlePerformance of Concrete-Filled Steel Tube Bridge Columns Subjected to Vehicle Collision
    typeJournal Paper
    journal volume24
    journal issue8
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0001439
    page04019074
    treeJournal of Bridge Engineering:;2019:;Volume ( 024 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian