YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Salt-Frost Resistance Performance of Airfield Concrete Based on Meso-Structural Parameters

    Source: Journal of Materials in Civil Engineering:;2019:;Volume ( 031 ):;issue: 009
    Author:
    Jie Yuan
    ,
    Zhenyu Du
    ,
    Yue Wu
    ,
    Feipeng Xiao
    DOI: 10.1061/(ASCE)MT.1943-5533.0002789
    Publisher: American Society of Civil Engineers
    Abstract: Airport cement pavement is prone to severe freeze–thaw damage due to the use of deicing chemicals. There is no unified evaluation parameter for analyzing the relationship between the concrete meso-structure and its salt-frost resistance. Therefore, industrial computed tomography (CT) scanning technology was applied in this study to obtain the meso-structure of concrete and the meso-structural parameters of concrete (air content, air void surface area per unit volume, air void distance factor, air void volume fractal box dimension, air void surface area fractal box dimension) that are introduced to characterize its meso-structure. The relationship between each structural parameter and the salt-frost resistance of concrete were analyzed, and a gray correlation model was established to quantitatively compare the significance of each parameter. In addition, the meso-structural parameters were used to analyze the internal structural changes of concrete under freeze–thaw cycles; this analysis mainly included three aspects. First, changes in concrete meso-structure before and after freeze–thaw cycles were analyzed. Second, changes in each meso-structural parameter of concrete under freeze–thaw cycles were tested and calculated. Third, a damage degree index, based on the air void surface area fractal box dimension, was proposed for characterizing the damage degree of concrete. The results showed that air void distance factor had the most significant influence on the salt-frost resistance of concrete in each structural parameter and could be used as the characterization parameter. The depth of the influence of salt frost on the internal structure of non-air-entrained concrete was deeper than its influence on air-entrained concrete. In addition, the damage degree index can quantify the degree of deterioration in concrete meso-structure well.
    • Download: (5.048Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Salt-Frost Resistance Performance of Airfield Concrete Based on Meso-Structural Parameters

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4259419
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorJie Yuan
    contributor authorZhenyu Du
    contributor authorYue Wu
    contributor authorFeipeng Xiao
    date accessioned2019-09-18T10:36:55Z
    date available2019-09-18T10:36:55Z
    date issued2019
    identifier other%28ASCE%29MT.1943-5533.0002789.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4259419
    description abstractAirport cement pavement is prone to severe freeze–thaw damage due to the use of deicing chemicals. There is no unified evaluation parameter for analyzing the relationship between the concrete meso-structure and its salt-frost resistance. Therefore, industrial computed tomography (CT) scanning technology was applied in this study to obtain the meso-structure of concrete and the meso-structural parameters of concrete (air content, air void surface area per unit volume, air void distance factor, air void volume fractal box dimension, air void surface area fractal box dimension) that are introduced to characterize its meso-structure. The relationship between each structural parameter and the salt-frost resistance of concrete were analyzed, and a gray correlation model was established to quantitatively compare the significance of each parameter. In addition, the meso-structural parameters were used to analyze the internal structural changes of concrete under freeze–thaw cycles; this analysis mainly included three aspects. First, changes in concrete meso-structure before and after freeze–thaw cycles were analyzed. Second, changes in each meso-structural parameter of concrete under freeze–thaw cycles were tested and calculated. Third, a damage degree index, based on the air void surface area fractal box dimension, was proposed for characterizing the damage degree of concrete. The results showed that air void distance factor had the most significant influence on the salt-frost resistance of concrete in each structural parameter and could be used as the characterization parameter. The depth of the influence of salt frost on the internal structure of non-air-entrained concrete was deeper than its influence on air-entrained concrete. In addition, the damage degree index can quantify the degree of deterioration in concrete meso-structure well.
    publisherAmerican Society of Civil Engineers
    titleSalt-Frost Resistance Performance of Airfield Concrete Based on Meso-Structural Parameters
    typeJournal Paper
    journal volume31
    journal issue9
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0002789
    page04019196
    treeJournal of Materials in Civil Engineering:;2019:;Volume ( 031 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian