YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Study on Moisture Susceptibility of Subgrade Soil with Superabsorbent Polymers

    Source: Journal of Materials in Civil Engineering:;2019:;Volume ( 031 ):;issue: 007
    Author:
    Hao Wu
    ,
    Zhe Li
    ,
    Weimin Song
    ,
    Jinfeng Zou
    ,
    Weizheng Liu
    ,
    Jia Yu
    DOI: 10.1061/(ASCE)MT.1943-5533.0002770
    Publisher: American Society of Civil Engineers
    Abstract: In this study, superabsorbent polymers (SAP) were introduced as an admixture in subgrade soils for the potential of improving their moisture susceptibility under moisture variation conditions. A series of experiments was performed on the soil samples to investigate the feasibility and influences of SAP on their fundamental physical properties and mechanical performance. In addition, wetting-drying (W-D) cyclic tests were conducted on the samples to simulate the moisture varying conditions that subgrade soils could experience in service. Compaction tests showed that SAP decreased the maximum dry density, but had no effect on the optimum moisture content. Soil amended by SAP exhibited superior uniformities in moisture distribution and grain size distribution. SAP helped enhance the direct shear behaviors of subgrade soils and increased the cohesive strengths and internal friction angles. The W-D cycles obviously degraded the mechanical properties. During the W-D cycles, SAP could also remarkably improve shear strength and the larger the SAP content, the better the shear performance. Results proved that a proper content of SAP (≤0.75%) added in the subgrade soils had no apparent impact on the volume stability, however a high content of SAP could significantly increase the volume by as much as 12.35%. Based on the test results, an optimal SAP content of no more than 0.75% is recommended.
    • Download: (3.816Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Study on Moisture Susceptibility of Subgrade Soil with Superabsorbent Polymers

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4259396
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorHao Wu
    contributor authorZhe Li
    contributor authorWeimin Song
    contributor authorJinfeng Zou
    contributor authorWeizheng Liu
    contributor authorJia Yu
    date accessioned2019-09-18T10:36:49Z
    date available2019-09-18T10:36:49Z
    date issued2019
    identifier other%28ASCE%29MT.1943-5533.0002770.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4259396
    description abstractIn this study, superabsorbent polymers (SAP) were introduced as an admixture in subgrade soils for the potential of improving their moisture susceptibility under moisture variation conditions. A series of experiments was performed on the soil samples to investigate the feasibility and influences of SAP on their fundamental physical properties and mechanical performance. In addition, wetting-drying (W-D) cyclic tests were conducted on the samples to simulate the moisture varying conditions that subgrade soils could experience in service. Compaction tests showed that SAP decreased the maximum dry density, but had no effect on the optimum moisture content. Soil amended by SAP exhibited superior uniformities in moisture distribution and grain size distribution. SAP helped enhance the direct shear behaviors of subgrade soils and increased the cohesive strengths and internal friction angles. The W-D cycles obviously degraded the mechanical properties. During the W-D cycles, SAP could also remarkably improve shear strength and the larger the SAP content, the better the shear performance. Results proved that a proper content of SAP (≤0.75%) added in the subgrade soils had no apparent impact on the volume stability, however a high content of SAP could significantly increase the volume by as much as 12.35%. Based on the test results, an optimal SAP content of no more than 0.75% is recommended.
    publisherAmerican Society of Civil Engineers
    titleExperimental Study on Moisture Susceptibility of Subgrade Soil with Superabsorbent Polymers
    typeJournal Paper
    journal volume31
    journal issue7
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0002770
    page04019120
    treeJournal of Materials in Civil Engineering:;2019:;Volume ( 031 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian