YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Residual Compressive Stress–Strain Relationship for Hybrid Recycled PET–Crumb Rubber Aggregate Concrete after Exposure to Elevated Temperatures

    Source: Journal of Materials in Civil Engineering:;2019:;Volume ( 031 ):;issue: 008
    Author:
    Mahdi Nematzadeh
    ,
    Mehdi Mousavimehr
    DOI: 10.1061/(ASCE)MT.1943-5533.0002749
    Publisher: American Society of Civil Engineers
    Abstract: One efficient way of recycling polymeric wastes such as crumb rubber and polyethylene terephthalate (PET) is to use them in a concrete mix. A prerequisite in accomplishing this application is to determine the general stress–strain relationship of this concrete type when subjected to fire in order to examine specific fire-performance criteria and better understand the actual behavior of structures made of it during the fire. In this research, the compressive stress–strain behavior of concrete containing polymeric recycled materials consisting of crumb rubber and PET as well as their combinations as natural sand replacements was investigated after exposure to elevated temperatures (200°C, 400°C, 600°C, and 800°C). For that purpose, the physicomechanical properties of the concrete specimens, namely, compressive strength, elastic modulus, strain at peak stress, ultimate strain, toughness, stress–strain curve, weight loss, and visual observation, were evaluated after exposure to elevated temperatures. Then a series of empirical equations were developed to predict the mechanical properties. Furthermore, a comparison was conducted between the experimental results and those predicted by international codes of practice, together with a comparison between the equations proposed here and the experimental results reported by other researchers. Finally, using the empirical equations obtained for the mechanical properties of the concrete containing recycled polymeric materials under elevated temperatures, a stress–strain model was proposed to predict the compressive behavior of this concrete, which demonstrated a good consistency with the experimental results. The results showed that as the temperature increased, a significant degradation occurred in the physical and mechanical properties of the concrete specimens. Moreover, the mentioned codes properly estimate the experimental results of compressive strength at higher temperatures and the tangential elastic modulus at all the temperatures, while they give a considerable overestimation of the strain at peak stress results.
    • Download: (2.578Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Residual Compressive Stress–Strain Relationship for Hybrid Recycled PET–Crumb Rubber Aggregate Concrete after Exposure to Elevated Temperatures

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4259371
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorMahdi Nematzadeh
    contributor authorMehdi Mousavimehr
    date accessioned2019-09-18T10:36:42Z
    date available2019-09-18T10:36:42Z
    date issued2019
    identifier other%28ASCE%29MT.1943-5533.0002749.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4259371
    description abstractOne efficient way of recycling polymeric wastes such as crumb rubber and polyethylene terephthalate (PET) is to use them in a concrete mix. A prerequisite in accomplishing this application is to determine the general stress–strain relationship of this concrete type when subjected to fire in order to examine specific fire-performance criteria and better understand the actual behavior of structures made of it during the fire. In this research, the compressive stress–strain behavior of concrete containing polymeric recycled materials consisting of crumb rubber and PET as well as their combinations as natural sand replacements was investigated after exposure to elevated temperatures (200°C, 400°C, 600°C, and 800°C). For that purpose, the physicomechanical properties of the concrete specimens, namely, compressive strength, elastic modulus, strain at peak stress, ultimate strain, toughness, stress–strain curve, weight loss, and visual observation, were evaluated after exposure to elevated temperatures. Then a series of empirical equations were developed to predict the mechanical properties. Furthermore, a comparison was conducted between the experimental results and those predicted by international codes of practice, together with a comparison between the equations proposed here and the experimental results reported by other researchers. Finally, using the empirical equations obtained for the mechanical properties of the concrete containing recycled polymeric materials under elevated temperatures, a stress–strain model was proposed to predict the compressive behavior of this concrete, which demonstrated a good consistency with the experimental results. The results showed that as the temperature increased, a significant degradation occurred in the physical and mechanical properties of the concrete specimens. Moreover, the mentioned codes properly estimate the experimental results of compressive strength at higher temperatures and the tangential elastic modulus at all the temperatures, while they give a considerable overestimation of the strain at peak stress results.
    publisherAmerican Society of Civil Engineers
    titleResidual Compressive Stress–Strain Relationship for Hybrid Recycled PET–Crumb Rubber Aggregate Concrete after Exposure to Elevated Temperatures
    typeJournal Paper
    journal volume31
    journal issue8
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0002749
    page04019136
    treeJournal of Materials in Civil Engineering:;2019:;Volume ( 031 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian