YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mechanical Properties of Stainless-Steel Cables at Elevated Temperature

    Source: Journal of Materials in Civil Engineering:;2019:;Volume ( 031 ):;issue: 007
    Author:
    Guojun Sun
    ,
    Xiaohui Li
    ,
    Suduo Xue
    DOI: 10.1061/(ASCE)MT.1943-5533.0002742
    Publisher: American Society of Civil Engineers
    Abstract: Investigating the mechanical properties of stainless-steel cables at elevated temperatures is important for the fire-resistant design and fire simulation analysis of prestressed structures. Stainless steel cables comprise several stainless-steel wires encircling a core wire in different layers. The overall mechanical capacity of a stainless-steel cable is attributed to the individual properties and collaborative mechanism of the stainless-steel wires. In this study considering the number of layers of a stainless-steel wire, 42 stainless steel cables with 19, 37, and 61 wires were tested under steady-state tension at ambient and elevated temperatures ranging from 100°C to 600°C. The test results show that the cables exhibit typical nonlinear characteristics with a lower proportional limit and no obvious yield plateau. There is no obvious effect of twisting characteristics on the elastic modulus of the cables; however, the ultimate tensile strength and 0.2% proof strength decrease gradually with the increase in the number of wire layers. The reduction factors of the mechanical properties of a stainless-steel material at elevated temperatures obtained as per EN1993-1-2 were higher than those obtained in this study, particularly of the 0.2% proof strength. Equations for the elastic modulus, ultimate strength, 0.2% proof strength, and fracture strain of the cables at elevated temperatures are proposed in this paper. Furthermore, a modified two-stage Ramberg–Osgood model for stainless steel cables at ambient and elevated temperatures is proposed.
    • Download: (1.852Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mechanical Properties of Stainless-Steel Cables at Elevated Temperature

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4259363
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorGuojun Sun
    contributor authorXiaohui Li
    contributor authorSuduo Xue
    date accessioned2019-09-18T10:36:40Z
    date available2019-09-18T10:36:40Z
    date issued2019
    identifier other%28ASCE%29MT.1943-5533.0002742.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4259363
    description abstractInvestigating the mechanical properties of stainless-steel cables at elevated temperatures is important for the fire-resistant design and fire simulation analysis of prestressed structures. Stainless steel cables comprise several stainless-steel wires encircling a core wire in different layers. The overall mechanical capacity of a stainless-steel cable is attributed to the individual properties and collaborative mechanism of the stainless-steel wires. In this study considering the number of layers of a stainless-steel wire, 42 stainless steel cables with 19, 37, and 61 wires were tested under steady-state tension at ambient and elevated temperatures ranging from 100°C to 600°C. The test results show that the cables exhibit typical nonlinear characteristics with a lower proportional limit and no obvious yield plateau. There is no obvious effect of twisting characteristics on the elastic modulus of the cables; however, the ultimate tensile strength and 0.2% proof strength decrease gradually with the increase in the number of wire layers. The reduction factors of the mechanical properties of a stainless-steel material at elevated temperatures obtained as per EN1993-1-2 were higher than those obtained in this study, particularly of the 0.2% proof strength. Equations for the elastic modulus, ultimate strength, 0.2% proof strength, and fracture strain of the cables at elevated temperatures are proposed in this paper. Furthermore, a modified two-stage Ramberg–Osgood model for stainless steel cables at ambient and elevated temperatures is proposed.
    publisherAmerican Society of Civil Engineers
    titleMechanical Properties of Stainless-Steel Cables at Elevated Temperature
    typeJournal Paper
    journal volume31
    journal issue7
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0002742
    page04019106
    treeJournal of Materials in Civil Engineering:;2019:;Volume ( 031 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian