Show simple item record

contributor authorLai, Fen
contributor authorWang, Yu
contributor authorEI-Shahat, Saeed A.
contributor authorLi, Guojun
contributor authorZhu, Xiangyuan
date accessioned2019-09-18T09:00:55Z
date available2019-09-18T09:00:55Z
date copyright6/3/2019 12:00:00 AM
date issued2019
identifier issn0098-2202
identifier otherfe_141_12_121302
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4257893
description abstractSolid particle erosion is a serious issue in centrifugal pumps that may result in economic losses. Erosion prediction in centrifugal pump is complex because the flow field inside it is three-dimensional (3D) unsteady and erosion can be affected by numerous factors. In this study, solid particle erosion of the entire centrifugal pump for liquid–solid flow is investigated numerically. Two-way coupled Eulerian–Lagrangian approach is adopted to calculate the liquid–solid interaction. The reflection model proposed by Grant and Tabakoff and the erosion model proposed by the Erosion/Corrosion Research Center are combined to calculate the erosion rate and predict the erosion pattern. Results show that for the baseline case, the inlet pipe is the least eroded component, whereas the impeller is the most eroded component. The highest average and maximum erosion rates occur at the hub of impeller. The most severe erosion region of a blade is the leading edge with a curvature angle that varies from 55 deg to 60 deg. The most severe erosion region of a volute is in the vicinity of a curvature angle of 270 deg. The impeller erosion pattern, especially the middle part of the hub and the vicinity of the blade pressure side, can be greatly influenced by operation parameters, such as flow rate, particle concentration, and particle size.
publisherAmerican Society of Mechanical Engineers (ASME)
titleNumerical Study of Solid Particle Erosion in a Centrifugal Pump for Liquid–Solid Flow
typeJournal Paper
journal volume141
journal issue12
journal titleJournal of Fluids Engineering
identifier doi10.1115/1.4043580
journal fristpage121302
journal lastpage121302-16
treeJournal of Fluids Engineering:;2019:;volume( 141 ):;issue: 012
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record