YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Performance of Constructed Facilities
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Performance of Constructed Facilities
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental and Numerical Investigation of Bottom Outlet Leakage in Earth-Fill Dams

    Source: Journal of Performance of Constructed Facilities:;2019:;Volume (033):;issue:003
    Author:
    Quanyi Xie;Jian Liu;Bo Han;Hongtao Li;Yuying Li;Xuanzheng Li
    DOI: doi:10.1061/(ASCE)CF.1943-5509.0001302
    Publisher: American Society of Civil Engineers
    Abstract: Leakage dissolution and the induced internal erosion failures in earth-fill dams and foundations significantly threaten the long-term operational safety of geotechnical structures. This phenomenon can be more dangerous in conjunction with the damage of internal water-supply bottom outlets due to the leakage-induced pore water pressure, which reduces soil effective stresses and therefore affects dam stability. However, the internal instability induced by bottom outlet leakage has not been thoroughly investigated. Therefore, in this paper, a bottom outlet leakage model testing system is designed to simulate and investigate bottom outlet leakage in earth-fill dams. This leads to a detailed investigation on seepage behavior in earth-fill dams, by considering the different positions of bottom outlet leakage, i.e., at the upstream side, the middle dam section, and the downstream side. Furthermore, numerical analyses are carried out to study the leakage-induced slope instability. Based on the experimental and numerical results, the following phenomena are observed: (1) when bottom outlet leakage occurs, the whole phreatic line is elevated and hydraulic head increases significantly at the leaking position. The equipotential line bends to the point of leakage and the seepage field at the leakage point is drastically affected; (2) in the direction perpendicular to the bottom outlet, the hydraulic head decreases nonlinearly as the distance from the bottom outlet increases; (3) seepage discharge increases as hydraulic head increases, in an approximately nonlinear relation. The seepage discharge due to bottom outlet leakage at the upstream side of the dam is much larger than that at the middle dam section and the downstream side; (4) the factor of safety of slope stability decreases as leakage-induced hydraulic head increases. The potential failure surface of the dam slope is circular when leakage occurs at the middle dam section and the downstream side. For the failure at the upstream side, seepage-induced tensile stress reaches the tensile strength, which leads to slope damage; and (5) based on the experimental and numerical investigations, suggestions are given for designing the monitoring scheme for bottom outlet leakage problems in earth-fill dams.
    • Download: (3.073Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental and Numerical Investigation of Bottom Outlet Leakage in Earth-Fill Dams

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4257350
    Collections
    • Journal of Performance of Constructed Facilities

    Show full item record

    contributor authorQuanyi Xie;Jian Liu;Bo Han;Hongtao Li;Yuying Li;Xuanzheng Li
    date accessioned2019-06-08T07:26:00Z
    date available2019-06-08T07:26:00Z
    date issued2019
    identifier other%28ASCE%29CF.1943-5509.0001302.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4257350
    description abstractLeakage dissolution and the induced internal erosion failures in earth-fill dams and foundations significantly threaten the long-term operational safety of geotechnical structures. This phenomenon can be more dangerous in conjunction with the damage of internal water-supply bottom outlets due to the leakage-induced pore water pressure, which reduces soil effective stresses and therefore affects dam stability. However, the internal instability induced by bottom outlet leakage has not been thoroughly investigated. Therefore, in this paper, a bottom outlet leakage model testing system is designed to simulate and investigate bottom outlet leakage in earth-fill dams. This leads to a detailed investigation on seepage behavior in earth-fill dams, by considering the different positions of bottom outlet leakage, i.e., at the upstream side, the middle dam section, and the downstream side. Furthermore, numerical analyses are carried out to study the leakage-induced slope instability. Based on the experimental and numerical results, the following phenomena are observed: (1) when bottom outlet leakage occurs, the whole phreatic line is elevated and hydraulic head increases significantly at the leaking position. The equipotential line bends to the point of leakage and the seepage field at the leakage point is drastically affected; (2) in the direction perpendicular to the bottom outlet, the hydraulic head decreases nonlinearly as the distance from the bottom outlet increases; (3) seepage discharge increases as hydraulic head increases, in an approximately nonlinear relation. The seepage discharge due to bottom outlet leakage at the upstream side of the dam is much larger than that at the middle dam section and the downstream side; (4) the factor of safety of slope stability decreases as leakage-induced hydraulic head increases. The potential failure surface of the dam slope is circular when leakage occurs at the middle dam section and the downstream side. For the failure at the upstream side, seepage-induced tensile stress reaches the tensile strength, which leads to slope damage; and (5) based on the experimental and numerical investigations, suggestions are given for designing the monitoring scheme for bottom outlet leakage problems in earth-fill dams.
    publisherAmerican Society of Civil Engineers
    titleExperimental and Numerical Investigation of Bottom Outlet Leakage in Earth-Fill Dams
    typeJournal Article
    journal volume33
    journal issue3
    journal titleJournal of Performance of Constructed Facilities
    identifier doidoi:10.1061/(ASCE)CF.1943-5509.0001302
    page04019037
    treeJournal of Performance of Constructed Facilities:;2019:;Volume (033):;issue:003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian