YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Postfire Performance of GFRP Stay-in-Place Formwork for Concrete Bridge Decks

    Source: Journal of Composites for Construction:;2019:;Volume (023):;issue:003
    Author:
    Benjamin Nicoletta;Joshua Woods;John Gales;Amir Fam
    DOI: doi:10.1061/(ASCE)CC.1943-5614.0000941
    Publisher: American Society of Civil Engineers
    Abstract: This study focuses on the fire performance of glass fiber–reinforced polymer (GFRP) stay-in-place structural formwork used for the rapid construction of reinforced concrete (RC) bridge decks and serves to direct future studies on the matter. Seven beam sections of a concrete deck reinforced using a GFRP stay-in-place form are tested. The beams in this study are subjected to both fire and simulated-fire damage and tested in four-point bending to assess the mechanical contribution of the GFRP stay-in-place formwork. Fire damage was applied to one beam via a 14.5-min heptane pool fire. Experimental results show that the simulated damage was an overly conservative representation of the fire damage sustained. The fire damage was insufficient to reduce the ultimate load or change the failure mode of the specimen when compared to an undamaged control. The embedded T-rib of the GFRP form was protected from fire damage and provided redundancy to the system. Despite a char thickness of about 15% of the base thickness, the GFRP base plate was able to protect the adjacent concrete from temperatures exceeding 100°C. An increased flexural capacity was observed in the fire-damaged specimen hypothesized to be a result of concrete precompression arising from the heating and cooling of the GFRP formwork. A series of direct bond shear tests between GFRP–concrete samples at elevated temperatures found a decrease in bond shear stress and bond stiffness as bond temperatures increased.
    • Download: (3.907Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Postfire Performance of GFRP Stay-in-Place Formwork for Concrete Bridge Decks

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4257331
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorBenjamin Nicoletta;Joshua Woods;John Gales;Amir Fam
    date accessioned2019-06-08T07:25:54Z
    date available2019-06-08T07:25:54Z
    date issued2019
    identifier other%28ASCE%29CC.1943-5614.0000941.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4257331
    description abstractThis study focuses on the fire performance of glass fiber–reinforced polymer (GFRP) stay-in-place structural formwork used for the rapid construction of reinforced concrete (RC) bridge decks and serves to direct future studies on the matter. Seven beam sections of a concrete deck reinforced using a GFRP stay-in-place form are tested. The beams in this study are subjected to both fire and simulated-fire damage and tested in four-point bending to assess the mechanical contribution of the GFRP stay-in-place formwork. Fire damage was applied to one beam via a 14.5-min heptane pool fire. Experimental results show that the simulated damage was an overly conservative representation of the fire damage sustained. The fire damage was insufficient to reduce the ultimate load or change the failure mode of the specimen when compared to an undamaged control. The embedded T-rib of the GFRP form was protected from fire damage and provided redundancy to the system. Despite a char thickness of about 15% of the base thickness, the GFRP base plate was able to protect the adjacent concrete from temperatures exceeding 100°C. An increased flexural capacity was observed in the fire-damaged specimen hypothesized to be a result of concrete precompression arising from the heating and cooling of the GFRP formwork. A series of direct bond shear tests between GFRP–concrete samples at elevated temperatures found a decrease in bond shear stress and bond stiffness as bond temperatures increased.
    publisherAmerican Society of Civil Engineers
    titlePostfire Performance of GFRP Stay-in-Place Formwork for Concrete Bridge Decks
    typeJournal Article
    journal volume23
    journal issue3
    journal titleJournal of Composites for Construction
    identifier doidoi:10.1061/(ASCE)CC.1943-5614.0000941
    page04019015
    treeJournal of Composites for Construction:;2019:;Volume (023):;issue:003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian