YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Improved Snow Drift Relations

    Source: Journal of Structural Engineering:;2019:;Volume ( 145 ):;issue: 005
    Author:
    Michael O’Rourke;John Cocca
    DOI: doi:10.1061/(ASCE)ST.1943-541X.0002278
    Publisher: American Society of Civil Engineers
    Abstract: Drift loads on roofs are arguably the most important snow load from a structural engineering perspective in the US, as they are the governing load for most cases of snow related structural collapse. Design relations for both leeward and windward roof step drifts are currently available. They were based upon an analysis of roughly 300 case histories from insurance company files. The relations have been in use in the US for roughly the past 30 years. When first introduced, they were considered an improvement over the prior relationship wherein the peak drift load was simply a multiple of the ground snow load. That is, the inclusion of the upwind fetch was intuitively appealing. Note however that neither wind speed nor wind duration were in the aforementioned original insurance company files. Hence winter windiness at the site could not be included as a variable in the original regression analysis, upon which the current relations are based. The overall purpose of this paper is to introduce a new drift relation which incorporates a winter windiness parameter. It is shown that this new relationship improves the associated drift prediction capability in comparison to the current drift relations.
    • Download: (609.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Improved Snow Drift Relations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4257210
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorMichael O’Rourke;John Cocca
    date accessioned2019-06-08T07:25:15Z
    date available2019-06-08T07:25:15Z
    date issued2019
    identifier other%28ASCE%29ST.1943-541X.0002278.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4257210
    description abstractDrift loads on roofs are arguably the most important snow load from a structural engineering perspective in the US, as they are the governing load for most cases of snow related structural collapse. Design relations for both leeward and windward roof step drifts are currently available. They were based upon an analysis of roughly 300 case histories from insurance company files. The relations have been in use in the US for roughly the past 30 years. When first introduced, they were considered an improvement over the prior relationship wherein the peak drift load was simply a multiple of the ground snow load. That is, the inclusion of the upwind fetch was intuitively appealing. Note however that neither wind speed nor wind duration were in the aforementioned original insurance company files. Hence winter windiness at the site could not be included as a variable in the original regression analysis, upon which the current relations are based. The overall purpose of this paper is to introduce a new drift relation which incorporates a winter windiness parameter. It is shown that this new relationship improves the associated drift prediction capability in comparison to the current drift relations.
    publisherAmerican Society of Civil Engineers
    titleImproved Snow Drift Relations
    typeJournal Article
    journal volume145
    journal issue5
    journal titleJournal of Structural Engineering
    identifier doidoi:10.1061/(ASCE)ST.1943-541X.0002278
    page04019027
    treeJournal of Structural Engineering:;2019:;Volume ( 145 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian