YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Rheological Properties of Cement Pastes with Polycarboxylate Superplasticizers of Varied Backbone Stiffness

    Source: Journal of Materials in Civil Engineering:;2019:;Volume (031):;issue:006
    Author:
    Xin Shu;Yanwei Wang;Yong Yang;Xiumei Wang;Qian Zhang;Hongxia Zhao;Qianping Ran;Jiaping Liu
    DOI: doi:10.1061/(ASCE)MT.1943-5533.0002735
    Publisher: American Society of Civil Engineers
    Abstract: Polycarboxylate (PCE) superplasticizers greatly affect the rheological properties of cementitious materials. Yet, the systematical influence of the PCE structure parameter on the rheological properties of cement paste is not so clear. The authors investigated the effect of backbone methyl group content (backbone stiffness) of PCE samples on the yield stress, residual viscosity, and apparent viscosity of cement pastes at varied water-to-cement ratios (w∶c ratios). An obvious difference was observed at low w∶c ratio, which relied on the particle separation distance H. The solution viscosity affected the apparent viscosity through the contribution to plastic viscosity at low w∶c ratio. At high w∶c ratio, the difference between PCE samples was small at consistent fluidity of cement paste due to consistent packing density and H. At low w∶c ratio, large amount of PCE molecules remained unadsorbed. The value of H approached its largest value and the apparent viscosity of cement pastes depended on the balance effect of H and viscosity of the continuous phase. Due to the high backbone stiffness, PCE of high backbone methyl group content exhibited high adsorption affinity and high solution viscosity, yet a small size of a single molecule after adsorption. At low w∶c ratio, H was small and the solution viscosity was high. The apparent viscosity of cement paste was therefore high.
    • Download: (2.362Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Rheological Properties of Cement Pastes with Polycarboxylate Superplasticizers of Varied Backbone Stiffness

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4257185
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorXin Shu;Yanwei Wang;Yong Yang;Xiumei Wang;Qian Zhang;Hongxia Zhao;Qianping Ran;Jiaping Liu
    date accessioned2019-06-08T07:25:06Z
    date available2019-06-08T07:25:06Z
    date issued2019
    identifier other%28ASCE%29MT.1943-5533.0002735.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4257185
    description abstractPolycarboxylate (PCE) superplasticizers greatly affect the rheological properties of cementitious materials. Yet, the systematical influence of the PCE structure parameter on the rheological properties of cement paste is not so clear. The authors investigated the effect of backbone methyl group content (backbone stiffness) of PCE samples on the yield stress, residual viscosity, and apparent viscosity of cement pastes at varied water-to-cement ratios (w∶c ratios). An obvious difference was observed at low w∶c ratio, which relied on the particle separation distance H. The solution viscosity affected the apparent viscosity through the contribution to plastic viscosity at low w∶c ratio. At high w∶c ratio, the difference between PCE samples was small at consistent fluidity of cement paste due to consistent packing density and H. At low w∶c ratio, large amount of PCE molecules remained unadsorbed. The value of H approached its largest value and the apparent viscosity of cement pastes depended on the balance effect of H and viscosity of the continuous phase. Due to the high backbone stiffness, PCE of high backbone methyl group content exhibited high adsorption affinity and high solution viscosity, yet a small size of a single molecule after adsorption. At low w∶c ratio, H was small and the solution viscosity was high. The apparent viscosity of cement paste was therefore high.
    publisherAmerican Society of Civil Engineers
    titleRheological Properties of Cement Pastes with Polycarboxylate Superplasticizers of Varied Backbone Stiffness
    typeJournal Article
    journal volume31
    journal issue6
    journal titleJournal of Materials in Civil Engineering
    identifier doidoi:10.1061/(ASCE)MT.1943-5533.0002735
    page04019092
    treeJournal of Materials in Civil Engineering:;2019:;Volume (031):;issue:006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian