YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Shear Properties of Stabilized Loess Using Novel Reactive Magnesia-Bearing Binders

    Source: Journal of Materials in Civil Engineering:;2019:;Volume (031):;issue:005
    Author:
    Dongxing Wang;Yiying Du;Jie Xiao
    DOI: doi:10.1061/(ASCE)MT.1943-5533.0002662
    Publisher: American Society of Civil Engineers
    Abstract: Loess stabilization is an effective approach to solve the deformation and subsidence problems in loess areas. Unconsolidated-undrained direct shear tests were conducted to investigate the improving effect of reactive MgO and MgO fly ash on the shear properties of loess, taking into account four major controlling factors, including MgO amount, curing time, moisture content, and compaction degree. Based on the test results, both the cohesion and internal friction angle of solidified loess achieve a peak at 6% MgO or 14-day curing time. The augment of water content accounts for the enhancement of cohesion before the optimum moisture content is reached, with a drop following afterward, while the friction angle decreases continuously. As the compaction degree grows, the cohesion and friction angle display escalating trends. It is suggested that the following optimum parameters from the viewpoint of shear performance be adopted for construction practices, i.e., 6% MgO content, 14-day curing, optimum water content, and 96% compaction degree. Scanning electron microscopy (SEM), thermogravimetric analysis (TG/DTA), and mercury intrusion porosimetry (MIP) were implemented to explore the microstructure and stabilization mechanisms. The major hydration products of MgO, MgO fly ash, and portland cement–stabilized loess are identified as brucite, magnesium silicate hydrate (M-S-H) plus brucite, and calcium silicate hydrate (C-S-H), respectively. Loess stabilized with reactive MgO-bearing materials has a higher hydration degree and better pore distribution than portland cement–stabilized loess. Reactive MgO and MgO fly ash outperform traditional portland cement (PC) in terms of shear property and microstructure. The MgO fly ash blends elucidate a positive effect on strength gain and decrease in large-size pores.
    • Download: (942.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Shear Properties of Stabilized Loess Using Novel Reactive Magnesia-Bearing Binders

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4257123
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorDongxing Wang;Yiying Du;Jie Xiao
    date accessioned2019-06-08T07:24:45Z
    date available2019-06-08T07:24:45Z
    date issued2019
    identifier other%28ASCE%29MT.1943-5533.0002662.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4257123
    description abstractLoess stabilization is an effective approach to solve the deformation and subsidence problems in loess areas. Unconsolidated-undrained direct shear tests were conducted to investigate the improving effect of reactive MgO and MgO fly ash on the shear properties of loess, taking into account four major controlling factors, including MgO amount, curing time, moisture content, and compaction degree. Based on the test results, both the cohesion and internal friction angle of solidified loess achieve a peak at 6% MgO or 14-day curing time. The augment of water content accounts for the enhancement of cohesion before the optimum moisture content is reached, with a drop following afterward, while the friction angle decreases continuously. As the compaction degree grows, the cohesion and friction angle display escalating trends. It is suggested that the following optimum parameters from the viewpoint of shear performance be adopted for construction practices, i.e., 6% MgO content, 14-day curing, optimum water content, and 96% compaction degree. Scanning electron microscopy (SEM), thermogravimetric analysis (TG/DTA), and mercury intrusion porosimetry (MIP) were implemented to explore the microstructure and stabilization mechanisms. The major hydration products of MgO, MgO fly ash, and portland cement–stabilized loess are identified as brucite, magnesium silicate hydrate (M-S-H) plus brucite, and calcium silicate hydrate (C-S-H), respectively. Loess stabilized with reactive MgO-bearing materials has a higher hydration degree and better pore distribution than portland cement–stabilized loess. Reactive MgO and MgO fly ash outperform traditional portland cement (PC) in terms of shear property and microstructure. The MgO fly ash blends elucidate a positive effect on strength gain and decrease in large-size pores.
    publisherAmerican Society of Civil Engineers
    titleShear Properties of Stabilized Loess Using Novel Reactive Magnesia-Bearing Binders
    typeJournal Article
    journal volume31
    journal issue5
    journal titleJournal of Materials in Civil Engineering
    identifier doidoi:10.1061/(ASCE)MT.1943-5533.0002662
    page04019039
    treeJournal of Materials in Civil Engineering:;2019:;Volume (031):;issue:005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian