YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Composite Dielectric Model of Asphalt Mixtures Considering Mineral Aggregate Gradation

    Source: Journal of Materials in Civil Engineering:;2019:;Volume (031):;issue:006
    Author:
    Yingying Zhai;Bei Zhang;Fuming Wang;Yanhui Zhong;Xiaolong Li
    DOI: doi:10.1061/(ASCE)MT.1943-5533.0002642
    Publisher: American Society of Civil Engineers
    Abstract: The composite dielectric model of asphalt mixtures is crucial to the use of the ground-penetrating radar (GPR) for detecting compaction, asphalt content, and other quality-related indexes of asphalt pavements. In this study, the interface transition zone between asphalt and mineral aggregate, as well as the mineral aggregate gradation, are considered based on analyses of the microstructure of the asphalt mixture. The effective medium theory and composite-sphere assemblage method are then combined to develop a microstructure-based physical model of asphalt mixtures. A polarizability equation is formulated for a single-mineral aggregate particle with independent interface behavior in which size effects of the particles are introduced. Based on the physical model of the asphalt mixture and the polarizability equation of the single-mineral aggregate particle, composite dielectric models of the asphalt–mineral skeleton structure (AMSS) and asphalt mixtures considering mineral aggregate gradations are generated. Tests and analyses show that the interface effect has a crucial influence on the polarization of the fine aggregate and filler of the mineral aggregate, which causes increasing polarizability in the fine aggregate and filler, as well as corresponding increases in the effective permittivity of the asphalt mixtures. Compared with classic models, the developed composite dielectric model of asphalt mixtures has higher calculation accuracy, with the prediction results more closely matching the test results of asphalt mixtures.
    • Download: (1.753Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Composite Dielectric Model of Asphalt Mixtures Considering Mineral Aggregate Gradation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4257118
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorYingying Zhai;Bei Zhang;Fuming Wang;Yanhui Zhong;Xiaolong Li
    date accessioned2019-06-08T07:24:43Z
    date available2019-06-08T07:24:43Z
    date issued2019
    identifier other%28ASCE%29MT.1943-5533.0002642.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4257118
    description abstractThe composite dielectric model of asphalt mixtures is crucial to the use of the ground-penetrating radar (GPR) for detecting compaction, asphalt content, and other quality-related indexes of asphalt pavements. In this study, the interface transition zone between asphalt and mineral aggregate, as well as the mineral aggregate gradation, are considered based on analyses of the microstructure of the asphalt mixture. The effective medium theory and composite-sphere assemblage method are then combined to develop a microstructure-based physical model of asphalt mixtures. A polarizability equation is formulated for a single-mineral aggregate particle with independent interface behavior in which size effects of the particles are introduced. Based on the physical model of the asphalt mixture and the polarizability equation of the single-mineral aggregate particle, composite dielectric models of the asphalt–mineral skeleton structure (AMSS) and asphalt mixtures considering mineral aggregate gradations are generated. Tests and analyses show that the interface effect has a crucial influence on the polarization of the fine aggregate and filler of the mineral aggregate, which causes increasing polarizability in the fine aggregate and filler, as well as corresponding increases in the effective permittivity of the asphalt mixtures. Compared with classic models, the developed composite dielectric model of asphalt mixtures has higher calculation accuracy, with the prediction results more closely matching the test results of asphalt mixtures.
    publisherAmerican Society of Civil Engineers
    titleComposite Dielectric Model of Asphalt Mixtures Considering Mineral Aggregate Gradation
    typeJournal Article
    journal volume31
    journal issue6
    journal titleJournal of Materials in Civil Engineering
    identifier doidoi:10.1061/(ASCE)MT.1943-5533.0002642
    page04019091
    treeJournal of Materials in Civil Engineering:;2019:;Volume (031):;issue:006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian