YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Theoretical Investigation of Leak’s Impact on Normal Modes of a Water–Filled Pipe: Small to Large Leak Impedance

    Source: Journal of Hydraulic Engineering:;2019:;Volume (0145):;issue:006
    Author:
    Jingrong Lin;Xun Wang;Mohamed S. Ghidaoui
    DOI: doi:10.1061/(ASCE)HY.1943-7900.0001606
    Publisher: American Society of Civil Engineers
    Abstract: Recent research shows the potential of resonant frequency-based leakage detection methods. However, there is a disagreement in whether a leak shifts the normal modes (often called natural or resonant modes) and whether a leak introduces additional peaks to the frequency response function (FRF) of the pipeline. In this paper, the impact of a leak on the normal modes is investigated. The trajectories of normal modes in the frequency complex plane with varying leak size are studied. The key parameter that represents the leak size and controls the trajectories of the normal modes is the ratio of the acoustic impedance of the pipe to the resistance impedance of the leak. It is found that, as the impedance ratio increases from zero (i.e., no leak), each normal mode shifts toward the upper-half complex plane of frequency by a leak, where the imaginary part is a measure of the leak-induced damping of the wave. When the impedance ratio is less than the order of one, the leak-induced normal-mode frequency shift is negligible, which supports the theory put forward by proponents of the no-shift and no-additional-peak hypothesis. When the impedance ratio is of the order of one or larger, not only is the shift of the FRF’s peak significant, but also new peaks appear, which supports the theory raised by proponents of the leak-induced additional peaks hypothesis.
    • Download: (1.573Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Theoretical Investigation of Leak’s Impact on Normal Modes of a Water–Filled Pipe: Small to Large Leak Impedance

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4257081
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorJingrong Lin;Xun Wang;Mohamed S. Ghidaoui
    date accessioned2019-06-08T07:24:31Z
    date available2019-06-08T07:24:31Z
    date issued2019
    identifier other%28ASCE%29HY.1943-7900.0001606.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4257081
    description abstractRecent research shows the potential of resonant frequency-based leakage detection methods. However, there is a disagreement in whether a leak shifts the normal modes (often called natural or resonant modes) and whether a leak introduces additional peaks to the frequency response function (FRF) of the pipeline. In this paper, the impact of a leak on the normal modes is investigated. The trajectories of normal modes in the frequency complex plane with varying leak size are studied. The key parameter that represents the leak size and controls the trajectories of the normal modes is the ratio of the acoustic impedance of the pipe to the resistance impedance of the leak. It is found that, as the impedance ratio increases from zero (i.e., no leak), each normal mode shifts toward the upper-half complex plane of frequency by a leak, where the imaginary part is a measure of the leak-induced damping of the wave. When the impedance ratio is less than the order of one, the leak-induced normal-mode frequency shift is negligible, which supports the theory put forward by proponents of the no-shift and no-additional-peak hypothesis. When the impedance ratio is of the order of one or larger, not only is the shift of the FRF’s peak significant, but also new peaks appear, which supports the theory raised by proponents of the leak-induced additional peaks hypothesis.
    publisherAmerican Society of Civil Engineers
    titleTheoretical Investigation of Leak’s Impact on Normal Modes of a Water–Filled Pipe: Small to Large Leak Impedance
    typeJournal Article
    journal volume145
    journal issue6
    journal titleJournal of Hydraulic Engineering
    identifier doidoi:10.1061/(ASCE)HY.1943-7900.0001606
    page04019017
    treeJournal of Hydraulic Engineering:;2019:;Volume (0145):;issue:006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian