| contributor author | Ahmed, Faez | |
| contributor author | Ramachandran, Sharath Kumar | |
| contributor author | Fuge, Mark | |
| contributor author | Hunter, Samuel | |
| contributor author | Miller, Scarlett | |
| date accessioned | 2019-03-17T11:06:12Z | |
| date available | 2019-03-17T11:06:12Z | |
| date copyright | 12/20/2018 12:00:00 AM | |
| date issued | 2019 | |
| identifier issn | 1050-0472 | |
| identifier other | md_141_02_021102.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4256666 | |
| description abstract | Assessing similarity between design ideas is an inherent part of many design evaluations to measure novelty. In such evaluation tasks, humans excel at making mental connections among diverse knowledge sets to score ideas on their uniqueness. However, their decisions about novelty are often subjective and difficult to explain. In this paper, we demonstrate a way to uncover human judgment of design idea similarity using two-dimensional (2D) idea maps. We derive these maps by asking participants for simple similarity comparisons of the form “Is idea A more similar to idea B or to idea C?” We show that these maps give insight into the relationships between ideas and help understand the design domain. We also propose that novel ideas can be identified by finding outliers on these idea maps. To demonstrate our method, we conduct experimental evaluations on two datasets—colored polygons (known answer) and milk frother sketches (unknown answer). We show that idea maps shed light on factors considered by participants in judging idea similarity and the maps are robust to noisy ratings. We also compare physical maps made by participants on a white-board to their computationally generated idea maps to compare how people think about spatial arrangement of design items. This method provides a new direction of research into deriving ground truth novelty metrics by combining human judgments and computational methods. | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | Interpreting Idea Maps: Pairwise Comparisons Reveal What Makes Ideas Novel | |
| type | Journal Paper | |
| journal volume | 141 | |
| journal issue | 2 | |
| journal title | Journal of Mechanical Design | |
| identifier doi | 10.1115/1.4041856 | |
| journal fristpage | 21102 | |
| journal lastpage | 021102-13 | |
| tree | Journal of Mechanical Design:;2019:;volume( 141 ):;issue: 002 | |
| contenttype | Fulltext | |