YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Lattice Discrete Particle Modeling of Reinforced Concrete Flexural Behavior

    Source: Journal of Structural Engineering:;2019:;Volume ( 145 ):;issue: 001
    Author:
    Mohammed Alnaggar; Daniele Pelessone; Gianluca Cusatis
    DOI: 10.1061/(ASCE)ST.1943-541X.0002230
    Publisher: American Society of Civil Engineers
    Abstract: Modern structural design relies heavily on accurate numerical simulations of materials and structures. For concrete and RC, however, available computational models, although successful for many applications, fail to a large extent to correctly capture complex failure mechanisms. This is the case, for example, for failures occurring in regions in which the assumptions of classical structural theories do not apply and for situations characterized by extensive fracture and size effect. To overcome this issue, this paper investigates the use of a discrete mesoscale model, the so-called lattice discrete particle model (LDPM), for simulation of the flexural behavior of RC structural elements. LDPM captures naturally complex fracture phenomena in a variety of loading conditions because it simulates material heterogeneity. This is obtained by replacing the actual concrete internal structure with a system of polyhedral cells interacting through nonlinear and fracturing lattice struts. The results presented in this paper show that LDPM can be used to predict with great accuracy the ultimate flexural behavior of RC beams with a wide range of main and secondary reinforcements. LDPM predicts very well the transition from ductile to brittle behavior for increasing reinforcement ratios in slender and stocky beams, and, most importantly, predicts the quasi-brittle characteristics of failure and the associated size effect.
    • Download: (2.047Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Lattice Discrete Particle Modeling of Reinforced Concrete Flexural Behavior

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4255479
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorMohammed Alnaggar; Daniele Pelessone; Gianluca Cusatis
    date accessioned2019-03-10T12:24:35Z
    date available2019-03-10T12:24:35Z
    date issued2019
    identifier other%28ASCE%29ST.1943-541X.0002230.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4255479
    description abstractModern structural design relies heavily on accurate numerical simulations of materials and structures. For concrete and RC, however, available computational models, although successful for many applications, fail to a large extent to correctly capture complex failure mechanisms. This is the case, for example, for failures occurring in regions in which the assumptions of classical structural theories do not apply and for situations characterized by extensive fracture and size effect. To overcome this issue, this paper investigates the use of a discrete mesoscale model, the so-called lattice discrete particle model (LDPM), for simulation of the flexural behavior of RC structural elements. LDPM captures naturally complex fracture phenomena in a variety of loading conditions because it simulates material heterogeneity. This is obtained by replacing the actual concrete internal structure with a system of polyhedral cells interacting through nonlinear and fracturing lattice struts. The results presented in this paper show that LDPM can be used to predict with great accuracy the ultimate flexural behavior of RC beams with a wide range of main and secondary reinforcements. LDPM predicts very well the transition from ductile to brittle behavior for increasing reinforcement ratios in slender and stocky beams, and, most importantly, predicts the quasi-brittle characteristics of failure and the associated size effect.
    publisherAmerican Society of Civil Engineers
    titleLattice Discrete Particle Modeling of Reinforced Concrete Flexural Behavior
    typeJournal Paper
    journal volume145
    journal issue1
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002230
    page04018231
    treeJournal of Structural Engineering:;2019:;Volume ( 145 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian