YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Model for Creep Behavior of Axially Loaded CLT Panels

    Source: Journal of Structural Engineering:;2019:;Volume ( 145 ):;issue: 001
    Author:
    Tu T. Nguyen; Thang N. Dao; Sriram Aaleti; Kobir Hossain; Kenneth J. Fridley
    DOI: 10.1061/(ASCE)ST.1943-541X.0002219
    Publisher: American Society of Civil Engineers
    Abstract: The performance of post-tensioned rocking cross-laminated timber (CLT) panels depends on the ability to maintain the post-tensioned force in the strand. This post-tensioned force may change over time due to the creep behavior of wood, which, in turn, is a function of time and moisture content in the CLT panels. In this study, a numerical moisture content diffusion model was developed to predict moisture content migration through CLT panels when the ambient relative humidity changes. Fick’s second law and the moisture content diffusion coefficients were applied to derive the differential diffusion equation for use in a numerical model. A four-element creep model was included to estimate the creep deformation of CLT panels over time under an axial load with changing environmental conditions. Data from a series of moisture content and creep tests under different configurations and environmental conditions were used to calibrate the proposed moisture content diffusion and creep model for CLT panels. The moisture content diffusion model was calibrated for two relative humidity steps, 50%–70% and 70%–90%. Then, a new creep model at material level that considers the change of moisture content in CLT panels was introduced. The viscoelastic parameters and mechano-sorptive constants were recommended for the creep model based on creep test data. Axial strain in CLT panels varied under 2% when ambient relative humidity switched between 50% and 70%. The axial strains in CLT panels with three layers were more sensitive to variations in surrounding relative humidity than those of CLT panels with five layers.
    • Download: (4.752Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Model for Creep Behavior of Axially Loaded CLT Panels

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4255472
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorTu T. Nguyen; Thang N. Dao; Sriram Aaleti; Kobir Hossain; Kenneth J. Fridley
    date accessioned2019-03-10T12:24:11Z
    date available2019-03-10T12:24:11Z
    date issued2019
    identifier other%28ASCE%29ST.1943-541X.0002219.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4255472
    description abstractThe performance of post-tensioned rocking cross-laminated timber (CLT) panels depends on the ability to maintain the post-tensioned force in the strand. This post-tensioned force may change over time due to the creep behavior of wood, which, in turn, is a function of time and moisture content in the CLT panels. In this study, a numerical moisture content diffusion model was developed to predict moisture content migration through CLT panels when the ambient relative humidity changes. Fick’s second law and the moisture content diffusion coefficients were applied to derive the differential diffusion equation for use in a numerical model. A four-element creep model was included to estimate the creep deformation of CLT panels over time under an axial load with changing environmental conditions. Data from a series of moisture content and creep tests under different configurations and environmental conditions were used to calibrate the proposed moisture content diffusion and creep model for CLT panels. The moisture content diffusion model was calibrated for two relative humidity steps, 50%–70% and 70%–90%. Then, a new creep model at material level that considers the change of moisture content in CLT panels was introduced. The viscoelastic parameters and mechano-sorptive constants were recommended for the creep model based on creep test data. Axial strain in CLT panels varied under 2% when ambient relative humidity switched between 50% and 70%. The axial strains in CLT panels with three layers were more sensitive to variations in surrounding relative humidity than those of CLT panels with five layers.
    publisherAmerican Society of Civil Engineers
    titleNumerical Model for Creep Behavior of Axially Loaded CLT Panels
    typeJournal Paper
    journal volume145
    journal issue1
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002219
    page04018224
    treeJournal of Structural Engineering:;2019:;Volume ( 145 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian