YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Enhanced Impact Properties of Concrete Modified with Nanofiller Inclusions

    Source: Journal of Materials in Civil Engineering:;2019:;Volume ( 031 ):;issue: 005
    Author:
    Jialiang Wang; Sufen Dong; Danna Wang; Xun Yu; Baoguo Han; Jinping Ou
    DOI: 10.1061/(ASCE)MT.1943-5533.0002659
    Publisher: American Society of Civil Engineers
    Abstract: This paper investigated the impact properties of reactive powder concrete modified with different types (nano-SiO2, nano-TiO2, and nano-ZrO2) and dosages (1.0% and 3.0%) of nanofillers. Three mechanical parameters (dynamic compressive strength, dynamic ultimate strain, and dynamic peak strain) and two toughness indicators (impact toughness and specific energy absorption) were used as the evaluation indexes of impact properties. Experimental results show that the incorporation of nanofillers significantly improves the impact properties of concrete. Composites with nano-SiO2 present the largest dynamic peak strain, whereas composites containing nano-ZrO2 and nano-TiO2 present higher dynamic ultimate strain and dynamic compressive strength. With the incorporation of nanofillers, the impact toughness of nanocomposites increased by 23.2%–39.9%, and the specific energy absorption increased by as high as 159.7%–246.9%. Among the three types of nanofillers, nano-SiO2 shows an obvious advantage on the toughening enhancement for concrete. The reinforcement mechanisms of nanofillers are attributed to three main aspects: (1) the small size effect and gap filling effect of nanofillers reduce the initial defects of concrete and increases the compactness; (2) the nucleation effect and core effect of nanofillers inhibit the crack propagation and improve the weak interface of concrete; and (3) the pozzolanic effect of nanofillers enhances the structural performance of concrete.
    • Download: (1.285Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Enhanced Impact Properties of Concrete Modified with Nanofiller Inclusions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4255392
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorJialiang Wang; Sufen Dong; Danna Wang; Xun Yu; Baoguo Han; Jinping Ou
    date accessioned2019-03-10T12:21:55Z
    date available2019-03-10T12:21:55Z
    date issued2019
    identifier other%28ASCE%29MT.1943-5533.0002659.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4255392
    description abstractThis paper investigated the impact properties of reactive powder concrete modified with different types (nano-SiO2, nano-TiO2, and nano-ZrO2) and dosages (1.0% and 3.0%) of nanofillers. Three mechanical parameters (dynamic compressive strength, dynamic ultimate strain, and dynamic peak strain) and two toughness indicators (impact toughness and specific energy absorption) were used as the evaluation indexes of impact properties. Experimental results show that the incorporation of nanofillers significantly improves the impact properties of concrete. Composites with nano-SiO2 present the largest dynamic peak strain, whereas composites containing nano-ZrO2 and nano-TiO2 present higher dynamic ultimate strain and dynamic compressive strength. With the incorporation of nanofillers, the impact toughness of nanocomposites increased by 23.2%–39.9%, and the specific energy absorption increased by as high as 159.7%–246.9%. Among the three types of nanofillers, nano-SiO2 shows an obvious advantage on the toughening enhancement for concrete. The reinforcement mechanisms of nanofillers are attributed to three main aspects: (1) the small size effect and gap filling effect of nanofillers reduce the initial defects of concrete and increases the compactness; (2) the nucleation effect and core effect of nanofillers inhibit the crack propagation and improve the weak interface of concrete; and (3) the pozzolanic effect of nanofillers enhances the structural performance of concrete.
    publisherAmerican Society of Civil Engineers
    titleEnhanced Impact Properties of Concrete Modified with Nanofiller Inclusions
    typeJournal Paper
    journal volume31
    journal issue5
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0002659
    page04019030
    treeJournal of Materials in Civil Engineering:;2019:;Volume ( 031 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian