YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Microstructural Response of Shock-Loaded Concrete, Mortar, and Cementitious Composite Materials in a Shock Tube Setup

    Source: Journal of Materials in Civil Engineering:;2019:;Volume ( 031 ):;issue: 004
    Author:
    Sutapa Deb; I. Obed Samuelraj; Nilanjan Mitra; Gopalan Jagadeesh
    DOI: 10.1061/(ASCE)MT.1943-5533.0002657
    Publisher: American Society of Civil Engineers
    Abstract: Microstructural changes in concrete, mortar, and cementitious composite material were investigated to determine the efficacy of these materials subjected to shock loading. An experimental methodology with the ability to generate reproducible shock waves of specified blast pressure and decay time was used to perform repeatable experiments in the range of trinitrotoluene (TNT) explosion that is unsafe for concrete columns as specified in the FEMA (Federal Emergency Management Agency) guidelines (38 kg TNT at 3.7 m). The changes in the pore volume fraction of the samples before and after shock loading were used to determine the efficacy of the materials subjected to shock loading. The study reveals that even though percentage increase in pore volume fraction before and after shock loading is highest for cementitious materials, its absolute value is low compared to that of control samples, thereby justifying the better performance of cementitious composite materials. Moreover, the size of the pores is also observed to be lower for cementitious composite samples compared to those of the and concrete samples after shock loading in comparison to the control materials in the study. The reason for the better performance of cementitious composite materials can be attributed to an increase in tensile ductility of the sample as a result of fiber addition. Apart from development of a new cementitious material for blast load mitigation, the study also demonstrates the need to consider pore size distribution in equations relating pore volume fraction to strength.
    • Download: (1.612Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Microstructural Response of Shock-Loaded Concrete, Mortar, and Cementitious Composite Materials in a Shock Tube Setup

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4255391
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorSutapa Deb; I. Obed Samuelraj; Nilanjan Mitra; Gopalan Jagadeesh
    date accessioned2019-03-10T12:21:54Z
    date available2019-03-10T12:21:54Z
    date issued2019
    identifier other%28ASCE%29MT.1943-5533.0002657.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4255391
    description abstractMicrostructural changes in concrete, mortar, and cementitious composite material were investigated to determine the efficacy of these materials subjected to shock loading. An experimental methodology with the ability to generate reproducible shock waves of specified blast pressure and decay time was used to perform repeatable experiments in the range of trinitrotoluene (TNT) explosion that is unsafe for concrete columns as specified in the FEMA (Federal Emergency Management Agency) guidelines (38 kg TNT at 3.7 m). The changes in the pore volume fraction of the samples before and after shock loading were used to determine the efficacy of the materials subjected to shock loading. The study reveals that even though percentage increase in pore volume fraction before and after shock loading is highest for cementitious materials, its absolute value is low compared to that of control samples, thereby justifying the better performance of cementitious composite materials. Moreover, the size of the pores is also observed to be lower for cementitious composite samples compared to those of the and concrete samples after shock loading in comparison to the control materials in the study. The reason for the better performance of cementitious composite materials can be attributed to an increase in tensile ductility of the sample as a result of fiber addition. Apart from development of a new cementitious material for blast load mitigation, the study also demonstrates the need to consider pore size distribution in equations relating pore volume fraction to strength.
    publisherAmerican Society of Civil Engineers
    titleMicrostructural Response of Shock-Loaded Concrete, Mortar, and Cementitious Composite Materials in a Shock Tube Setup
    typeJournal Paper
    journal volume31
    journal issue4
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0002657
    page04019029
    treeJournal of Materials in Civil Engineering:;2019:;Volume ( 031 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian