YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Influence of Hybrid Fiber Reinforcement on Mechanical Properties and Autogenous Shrinkage of an Ecological UHPFRCC

    Source: Journal of Materials in Civil Engineering:;2019:;Volume ( 031 ):;issue: 005
    Author:
    Rui Ma; Liping Guo; Shaoxiong Ye; Wei Sun; Jiaping Liu
    DOI: 10.1061/(ASCE)MT.1943-5533.0002650
    Publisher: American Society of Civil Engineers
    Abstract: Ultra-high-performance fiber-reinforced cementitious composites UHPFRCC) possess outstanding mechanical properties and durability. Strength development and shrinkage deformation are critical properties of UHPFRCC and should be carefully settled during their application. In this study, hybrid fibers of straight steel fiber (SSF), end-hooked steel fiber (HSF), and cellulose fiber (CF) were used to improve the strength development and reduce the autogenous shrinkage of an ecological UHPFRCC owing to their synergistic effects. Samples with different SSF/HSF ratios, 1:0, 1:1, 2:1, 3:1, 4:1, and 0:1, and with different CF dosages, 0, 0.7, 0.9, and 1.1  kg/m3, were tested. The results implied that the strength development of the UHPFRCC was improved efficiently with the addition of HSF due to its greater bond strength. The compressive strength of the UHPFRCC increased with the increasing ratio of HSF/SSF, achieving its maximum level of 224.8 MPa at HSF/SSF of 1/3 and then decreasing slightly. The addition of CF significantly improved the flexural strength of the UHPFRCC with no compressive strength decline. The internal curing effect of CF inhibited the hydration degree early on and promoted a continuous hydration for a long time. The increased rate of autogenous shrinkage decreased with CF content, and the shrinkage value reduced 33% with the optimal content of CF.
    • Download: (1.754Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Influence of Hybrid Fiber Reinforcement on Mechanical Properties and Autogenous Shrinkage of an Ecological UHPFRCC

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4255385
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorRui Ma; Liping Guo; Shaoxiong Ye; Wei Sun; Jiaping Liu
    date accessioned2019-03-10T12:21:50Z
    date available2019-03-10T12:21:50Z
    date issued2019
    identifier other%28ASCE%29MT.1943-5533.0002650.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4255385
    description abstractUltra-high-performance fiber-reinforced cementitious composites UHPFRCC) possess outstanding mechanical properties and durability. Strength development and shrinkage deformation are critical properties of UHPFRCC and should be carefully settled during their application. In this study, hybrid fibers of straight steel fiber (SSF), end-hooked steel fiber (HSF), and cellulose fiber (CF) were used to improve the strength development and reduce the autogenous shrinkage of an ecological UHPFRCC owing to their synergistic effects. Samples with different SSF/HSF ratios, 1:0, 1:1, 2:1, 3:1, 4:1, and 0:1, and with different CF dosages, 0, 0.7, 0.9, and 1.1  kg/m3, were tested. The results implied that the strength development of the UHPFRCC was improved efficiently with the addition of HSF due to its greater bond strength. The compressive strength of the UHPFRCC increased with the increasing ratio of HSF/SSF, achieving its maximum level of 224.8 MPa at HSF/SSF of 1/3 and then decreasing slightly. The addition of CF significantly improved the flexural strength of the UHPFRCC with no compressive strength decline. The internal curing effect of CF inhibited the hydration degree early on and promoted a continuous hydration for a long time. The increased rate of autogenous shrinkage decreased with CF content, and the shrinkage value reduced 33% with the optimal content of CF.
    publisherAmerican Society of Civil Engineers
    titleInfluence of Hybrid Fiber Reinforcement on Mechanical Properties and Autogenous Shrinkage of an Ecological UHPFRCC
    typeJournal Paper
    journal volume31
    journal issue5
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0002650
    page04019032
    treeJournal of Materials in Civil Engineering:;2019:;Volume ( 031 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian