YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Optimization of Design Parameters for Enhanced Integrity of Massive Drilled Shaft

    Source: Journal of Materials in Civil Engineering:;2019:;Volume ( 031 ):;issue: 004
    Author:
    Sangyoung Han; Sanghyun Chun; Adrian M. Lawrence; Mang Tia
    DOI: 10.1061/(ASCE)MT.1943-5533.0002644
    Publisher: American Society of Civil Engineers
    Abstract: This study focused on the optimization of concrete mixture and geometric design parameters for a drilled shaft to effectively reduce the potential degradation of mass concrete. At concrete’s early hardening stage, the heat of hydration plays a pivotal role that affects the integrity of mass concrete. The Florida Department of Transportation (FDOT) currently designates concrete drilled shafts with a minimum diameter of 1.8 m as mass concrete due to a great concern about high temperature development. In this study, a validated thermal finite-element (FE) model for a drilled shaft with a diameter of 1.8 m was developed for a parametric analysis to determine the effects of concrete property, surrounding soil condition, geometric design, and pipe cooling on temperature development. The results indicated that the use of supplementary cementitious material (SCM) significantly reduced the temperature development in a drilled shaft. The temperature development increased as the placement temperature and volume:surface area (V:A) ratio increased. In particular, the use of a centroid void shaft and a pipe cooling system significantly decreased the maximum temperature and temperature differential, and could be a viable solution to effectively mitigate the temperature development, preventing potential disintegration due to the effects of delayed ettringite formation, strength reduction, or thermal cracking.
    • Download: (4.879Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Optimization of Design Parameters for Enhanced Integrity of Massive Drilled Shaft

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4255379
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorSangyoung Han; Sanghyun Chun; Adrian M. Lawrence; Mang Tia
    date accessioned2019-03-10T12:21:37Z
    date available2019-03-10T12:21:37Z
    date issued2019
    identifier other%28ASCE%29MT.1943-5533.0002644.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4255379
    description abstractThis study focused on the optimization of concrete mixture and geometric design parameters for a drilled shaft to effectively reduce the potential degradation of mass concrete. At concrete’s early hardening stage, the heat of hydration plays a pivotal role that affects the integrity of mass concrete. The Florida Department of Transportation (FDOT) currently designates concrete drilled shafts with a minimum diameter of 1.8 m as mass concrete due to a great concern about high temperature development. In this study, a validated thermal finite-element (FE) model for a drilled shaft with a diameter of 1.8 m was developed for a parametric analysis to determine the effects of concrete property, surrounding soil condition, geometric design, and pipe cooling on temperature development. The results indicated that the use of supplementary cementitious material (SCM) significantly reduced the temperature development in a drilled shaft. The temperature development increased as the placement temperature and volume:surface area (V:A) ratio increased. In particular, the use of a centroid void shaft and a pipe cooling system significantly decreased the maximum temperature and temperature differential, and could be a viable solution to effectively mitigate the temperature development, preventing potential disintegration due to the effects of delayed ettringite formation, strength reduction, or thermal cracking.
    publisherAmerican Society of Civil Engineers
    titleOptimization of Design Parameters for Enhanced Integrity of Massive Drilled Shaft
    typeJournal Paper
    journal volume31
    journal issue4
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0002644
    page04019015
    treeJournal of Materials in Civil Engineering:;2019:;Volume ( 031 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian