YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Performance of Concrete with Alkali-Activated Materials and Nanosilica in Acidic Environments

    Source: Journal of Materials in Civil Engineering:;2019:;Volume ( 031 ):;issue: 003
    Author:
    M. H. Mahmoud; M. T. Bassuoni
    DOI: 10.1061/(ASCE)MT.1943-5533.0002635
    Publisher: American Society of Civil Engineers
    Abstract: Owing to their high chemical resistance, alkali-activated materials (AAMs) may represent a promising option for repairing concrete structures affected by acidic media. However, AAMs have some technical limitations with respect to cast-in-situ applications because they require heat curing to mitigate delay in setting time, strength gain, and microstructural development at early ages. Therefore, this study investigated the performance of concrete with AAMs incorporating blends of fly ash, slag, and nanosilica cured at normal temperatures and exposed to very aggressive (10%) sulfuric acid environments. In addition to full immersion exposure for 18 weeks, a combined exposure was implemented to simulate field conditions involving alternating wetting–drying and freezing–thawing cycles combined with sulfuric acid attack. The evaluation criteria were based on visual assessment, neutralization depth, mass loss, and bond strength to substrate concrete in repair prototypes. In addition, the alterations of the microstructure of specimens were analyzed by mineralogical, thermal, and microscopy studies. The results showed that concretes prepared with fly ash–based AAMs with a small amount (6%) of nanosilica or (10%) slag without heat curing showed improved durability in sulfuric acid environments in terms of reduced penetrability of acidic media, low mass loss, and increased bond strength to substrate concrete with time. Thus, such AAMs could be a viable option for cast-in-situ repair applications of concrete elements in acidic environments.
    • Download: (1.764Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Performance of Concrete with Alkali-Activated Materials and Nanosilica in Acidic Environments

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4255369
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorM. H. Mahmoud; M. T. Bassuoni
    date accessioned2019-03-10T12:21:16Z
    date available2019-03-10T12:21:16Z
    date issued2019
    identifier other%28ASCE%29MT.1943-5533.0002635.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4255369
    description abstractOwing to their high chemical resistance, alkali-activated materials (AAMs) may represent a promising option for repairing concrete structures affected by acidic media. However, AAMs have some technical limitations with respect to cast-in-situ applications because they require heat curing to mitigate delay in setting time, strength gain, and microstructural development at early ages. Therefore, this study investigated the performance of concrete with AAMs incorporating blends of fly ash, slag, and nanosilica cured at normal temperatures and exposed to very aggressive (10%) sulfuric acid environments. In addition to full immersion exposure for 18 weeks, a combined exposure was implemented to simulate field conditions involving alternating wetting–drying and freezing–thawing cycles combined with sulfuric acid attack. The evaluation criteria were based on visual assessment, neutralization depth, mass loss, and bond strength to substrate concrete in repair prototypes. In addition, the alterations of the microstructure of specimens were analyzed by mineralogical, thermal, and microscopy studies. The results showed that concretes prepared with fly ash–based AAMs with a small amount (6%) of nanosilica or (10%) slag without heat curing showed improved durability in sulfuric acid environments in terms of reduced penetrability of acidic media, low mass loss, and increased bond strength to substrate concrete with time. Thus, such AAMs could be a viable option for cast-in-situ repair applications of concrete elements in acidic environments.
    publisherAmerican Society of Civil Engineers
    titlePerformance of Concrete with Alkali-Activated Materials and Nanosilica in Acidic Environments
    typeJournal Paper
    journal volume31
    journal issue3
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0002635
    page04019009
    treeJournal of Materials in Civil Engineering:;2019:;Volume ( 031 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian