YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mode I and Mode II Granite Fractures after Distinct Thermal Shock Treatments

    Source: Journal of Materials in Civil Engineering:;2019:;Volume ( 031 ):;issue: 004
    Author:
    Xiang Li; Zhuoyao Zhang; Wei Chen; Tubing Yin; Xibing Li
    DOI: 10.1061/(ASCE)MT.1943-5533.0002627
    Publisher: American Society of Civil Engineers
    Abstract: In this study, the effect of thermal shock (TS) on the mechanical properties of granite is investigated. Two schemes are performed to provide different cooling rates for the TS processes. Decreasing trend of dry density and P-wave velocity with ascending TS temperatures are observed. The porosity has an increasing trend with ascending TS temperatures. The effects of TS on the mechanical responses are investigated through Brazilian tests on the granite specimens of the cracked straight through Brazilian disc (CSTBD) under Mode I and Mode II loading. Mode I and Mode II fracture toughness values are obtained according to the mechanical tests, and a power relation is proposed to fit the fracture toughness values with respect to TS temperatures. Scanning electron microscope (SEM) is adopted to observe the fracture surfaces of the TS-treated specimens after the tests. Distinct features such as intergranular fracture are identified on the fracture surface of a water-cooled specimen, which indicates material deterioration to a greater extent as compared with that of an air-cooled specimen.
    • Download: (2.182Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mode I and Mode II Granite Fractures after Distinct Thermal Shock Treatments

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4255361
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorXiang Li; Zhuoyao Zhang; Wei Chen; Tubing Yin; Xibing Li
    date accessioned2019-03-10T12:20:41Z
    date available2019-03-10T12:20:41Z
    date issued2019
    identifier other%28ASCE%29MT.1943-5533.0002627.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4255361
    description abstractIn this study, the effect of thermal shock (TS) on the mechanical properties of granite is investigated. Two schemes are performed to provide different cooling rates for the TS processes. Decreasing trend of dry density and P-wave velocity with ascending TS temperatures are observed. The porosity has an increasing trend with ascending TS temperatures. The effects of TS on the mechanical responses are investigated through Brazilian tests on the granite specimens of the cracked straight through Brazilian disc (CSTBD) under Mode I and Mode II loading. Mode I and Mode II fracture toughness values are obtained according to the mechanical tests, and a power relation is proposed to fit the fracture toughness values with respect to TS temperatures. Scanning electron microscope (SEM) is adopted to observe the fracture surfaces of the TS-treated specimens after the tests. Distinct features such as intergranular fracture are identified on the fracture surface of a water-cooled specimen, which indicates material deterioration to a greater extent as compared with that of an air-cooled specimen.
    publisherAmerican Society of Civil Engineers
    titleMode I and Mode II Granite Fractures after Distinct Thermal Shock Treatments
    typeJournal Paper
    journal volume31
    journal issue4
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0002627
    page06019001
    treeJournal of Materials in Civil Engineering:;2019:;Volume ( 031 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian