YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Performance of Self-Consolidating Engineered Cementitious Composite under Drop-Weight Impact Loading

    Source: Journal of Materials in Civil Engineering:;2019:;Volume ( 031 ):;issue: 003
    Author:
    Mohamed K. Ismail; Assem A. A. Hassan; Mohamed Lachemi
    DOI: 10.1061/(ASCE)MT.1943-5533.0002619
    Publisher: American Society of Civil Engineers
    Abstract: This study assessed the impact resistance of self-consolidating engineered cementitious composite (SCECC) using the American Concrete Institute (ACI) Committee 544’s repeated drop-weight impact test and flexural impact loading test. The investigation also evaluated the compressive strength, splitting tensile strength, flexural strength, and modulus of elasticity of the tested mixtures. Fly ash (FA), which is typically used in common SCECCs, was partially replaced by slag (SL), silica fume (SF), and/or metakaolin (MK). Also, the microsilica sand (SS), which is the primary aggregate used in SCECCs, was replaced by crushed granite sand (CS) of different sizes to develop different SCECC mixtures. Standard SCECC mixture (made with only FA), vibrated engineered cementitious composite mixture, and traditional self-consolidating concrete (SCC) made with 10 mm coarse aggregate were tested for comparison. The results indicated that combining SL, SF, or MK with FA in SCECC mixtures can create composites with improved mechanical properties, adequate ductility, and enhanced impact resistance. The highest improvement in the impact resistance in both drop-weight and flexural impact loading tests was obtained when 15% to 20% MK was combined with FA. SCECC containing CS provided comparable performance with that of SCECC made with SS, indicating promising potentials for developing cost-effective composites. The impact resistance results in both drop-weight and flexural impact loading tests also indicated that SCECC mixtures exhibited significantly higher impact resistance compared with their SCC counterpart mixtures with comparable compressive strengths.
    • Download: (1.241Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Performance of Self-Consolidating Engineered Cementitious Composite under Drop-Weight Impact Loading

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4255352
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorMohamed K. Ismail; Assem A. A. Hassan; Mohamed Lachemi
    date accessioned2019-03-10T12:20:26Z
    date available2019-03-10T12:20:26Z
    date issued2019
    identifier other%28ASCE%29MT.1943-5533.0002619.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4255352
    description abstractThis study assessed the impact resistance of self-consolidating engineered cementitious composite (SCECC) using the American Concrete Institute (ACI) Committee 544’s repeated drop-weight impact test and flexural impact loading test. The investigation also evaluated the compressive strength, splitting tensile strength, flexural strength, and modulus of elasticity of the tested mixtures. Fly ash (FA), which is typically used in common SCECCs, was partially replaced by slag (SL), silica fume (SF), and/or metakaolin (MK). Also, the microsilica sand (SS), which is the primary aggregate used in SCECCs, was replaced by crushed granite sand (CS) of different sizes to develop different SCECC mixtures. Standard SCECC mixture (made with only FA), vibrated engineered cementitious composite mixture, and traditional self-consolidating concrete (SCC) made with 10 mm coarse aggregate were tested for comparison. The results indicated that combining SL, SF, or MK with FA in SCECC mixtures can create composites with improved mechanical properties, adequate ductility, and enhanced impact resistance. The highest improvement in the impact resistance in both drop-weight and flexural impact loading tests was obtained when 15% to 20% MK was combined with FA. SCECC containing CS provided comparable performance with that of SCECC made with SS, indicating promising potentials for developing cost-effective composites. The impact resistance results in both drop-weight and flexural impact loading tests also indicated that SCECC mixtures exhibited significantly higher impact resistance compared with their SCC counterpart mixtures with comparable compressive strengths.
    publisherAmerican Society of Civil Engineers
    titlePerformance of Self-Consolidating Engineered Cementitious Composite under Drop-Weight Impact Loading
    typeJournal Paper
    journal volume31
    journal issue3
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0002619
    page04018400
    treeJournal of Materials in Civil Engineering:;2019:;Volume ( 031 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian