YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Management in Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Management in Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Identification and Reduction of Synchronous Replacements in Life-Cycle Cost Analysis of Equipment

    Source: Journal of Management in Engineering:;2019:;Volume ( 035 ):;issue: 001
    Author:
    Jonghyeob Kim; Sangwon Han; Chang-taek Hyun
    DOI: 10.1061/(ASCE)ME.1943-5479.0000673
    Publisher: American Society of Civil Engineers
    Abstract: Life-cycle cost analysis (LCCA) is a methodology used to calculate the total cost of a project from initial planning to final disposal. In conventional approaches, LCCA assumes that regular and preventive maintenance will be performed according to each replacement cycle for individual components, and replacement for each component is considered independently. However, because the components of equipment used in buildings are installed systemically, replacements of major components may cause unexpected replacements of dependent minor components. Therefore, it is necessary to identify additional replacements based on the associations among these related replacement components to achieve a more reliable LCCA. In response, this study proposes an LCCA model that comprehensively considers the relationships among the maintenance components. The development of the model involves identifying relationships among components using social network analysis (SNA), arranging individual replacement timings of the components that reflect these relationships, and analyzing the life-cycle cost (LCC) based on the arranged timing. To validate the model, its applicability and effectiveness was illustrated and tested using 19 components of a rainwater reuse system. This study makes a theoretical contribution to the body of knowledge by suggesting concepts of synchronous relationships and replacements based on SNA. In addition, the use of the model proposed in this study enables practitioners to analyze LCCs that reflect synchronous replacements, which allows more reasonable decision-making considering hidden costs in conventional LCC.
    • Download: (850.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Identification and Reduction of Synchronous Replacements in Life-Cycle Cost Analysis of Equipment

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4255246
    Collections
    • Journal of Management in Engineering

    Show full item record

    contributor authorJonghyeob Kim; Sangwon Han; Chang-taek Hyun
    date accessioned2019-03-10T12:16:17Z
    date available2019-03-10T12:16:17Z
    date issued2019
    identifier other%28ASCE%29ME.1943-5479.0000673.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4255246
    description abstractLife-cycle cost analysis (LCCA) is a methodology used to calculate the total cost of a project from initial planning to final disposal. In conventional approaches, LCCA assumes that regular and preventive maintenance will be performed according to each replacement cycle for individual components, and replacement for each component is considered independently. However, because the components of equipment used in buildings are installed systemically, replacements of major components may cause unexpected replacements of dependent minor components. Therefore, it is necessary to identify additional replacements based on the associations among these related replacement components to achieve a more reliable LCCA. In response, this study proposes an LCCA model that comprehensively considers the relationships among the maintenance components. The development of the model involves identifying relationships among components using social network analysis (SNA), arranging individual replacement timings of the components that reflect these relationships, and analyzing the life-cycle cost (LCC) based on the arranged timing. To validate the model, its applicability and effectiveness was illustrated and tested using 19 components of a rainwater reuse system. This study makes a theoretical contribution to the body of knowledge by suggesting concepts of synchronous relationships and replacements based on SNA. In addition, the use of the model proposed in this study enables practitioners to analyze LCCs that reflect synchronous replacements, which allows more reasonable decision-making considering hidden costs in conventional LCC.
    publisherAmerican Society of Civil Engineers
    titleIdentification and Reduction of Synchronous Replacements in Life-Cycle Cost Analysis of Equipment
    typeJournal Paper
    journal volume35
    journal issue1
    journal titleJournal of Management in Engineering
    identifier doi10.1061/(ASCE)ME.1943-5479.0000673
    page04018058
    treeJournal of Management in Engineering:;2019:;Volume ( 035 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian