YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Impacts of Flow and Tracer Release Unsteadiness on Tracer Analysis of Water and Wastewater Treatment Facilities

    Source: Journal of Hydraulic Engineering:;2019:;Volume ( 145 ):;issue: 004
    Author:
    Jie Zhang; Kiesha C. Pierre; Andres E. Tejada-Martinez
    DOI: 10.1061/(ASCE)HY.1943-7900.0001569
    Publisher: American Society of Civil Engineers
    Abstract: Computational fluid dynamics (CFD) was used to investigate how residence time analysis based on passive tracer transport in environmental and chemical engineering fluid systems can be significantly affected by flow or tracer release unsteadiness. The unsteadiness may be caused by intermittent influent flow, time-varying operations, and nonuniform tracer release profiles. Oftentimes these unsteady conditions are considered negligible and their impact on residence time analysis is not considered. Systems analyzed included a full-scale stabilization pond, a full-scale oxidation ditch, and full-scale and lab-scale baffled tanks. In the case of the stabilization pond, it was found that time-dependent inflow based on realistic water consumption pattern does not significantly affect mean residence time (MRT) but does have a nonnegligible effect on baffling factor θ10 relative to constant inflow. In the case of a surface aerated oxidation ditch, aerator speed was found to have a nonnegligible impact on MRT, and thus it is recommended that CFD tracer studies should consider changes in aerator speed during daily cycles of operation. The slug and step methods were considered for tracer analysis in baffled contactors. It was found that the tracer release time in the slug method should be kept at less than 5% of the theoretical residence time in order to obtain accurate measurements of residence time characteristics. Furthermore, residence time distribution obtained from tracer analysis based on the step method can be affected by the initial transient and subsequent fluctuations in the time series of injected tracer concentration that often characterizes physical experiments.
    • Download: (1.700Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Impacts of Flow and Tracer Release Unsteadiness on Tracer Analysis of Water and Wastewater Treatment Facilities

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4255120
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorJie Zhang; Kiesha C. Pierre; Andres E. Tejada-Martinez
    date accessioned2019-03-10T12:13:02Z
    date available2019-03-10T12:13:02Z
    date issued2019
    identifier other%28ASCE%29HY.1943-7900.0001569.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4255120
    description abstractComputational fluid dynamics (CFD) was used to investigate how residence time analysis based on passive tracer transport in environmental and chemical engineering fluid systems can be significantly affected by flow or tracer release unsteadiness. The unsteadiness may be caused by intermittent influent flow, time-varying operations, and nonuniform tracer release profiles. Oftentimes these unsteady conditions are considered negligible and their impact on residence time analysis is not considered. Systems analyzed included a full-scale stabilization pond, a full-scale oxidation ditch, and full-scale and lab-scale baffled tanks. In the case of the stabilization pond, it was found that time-dependent inflow based on realistic water consumption pattern does not significantly affect mean residence time (MRT) but does have a nonnegligible effect on baffling factor θ10 relative to constant inflow. In the case of a surface aerated oxidation ditch, aerator speed was found to have a nonnegligible impact on MRT, and thus it is recommended that CFD tracer studies should consider changes in aerator speed during daily cycles of operation. The slug and step methods were considered for tracer analysis in baffled contactors. It was found that the tracer release time in the slug method should be kept at less than 5% of the theoretical residence time in order to obtain accurate measurements of residence time characteristics. Furthermore, residence time distribution obtained from tracer analysis based on the step method can be affected by the initial transient and subsequent fluctuations in the time series of injected tracer concentration that often characterizes physical experiments.
    publisherAmerican Society of Civil Engineers
    titleImpacts of Flow and Tracer Release Unsteadiness on Tracer Analysis of Water and Wastewater Treatment Facilities
    typeJournal Paper
    journal volume145
    journal issue4
    journal titleJournal of Hydraulic Engineering
    identifier doi10.1061/(ASCE)HY.1943-7900.0001569
    page04019004
    treeJournal of Hydraulic Engineering:;2019:;Volume ( 145 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian