YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Adaptive Management of Coastal Aquifers Using Entropy-Set Pair Analysis–Based Three-Dimensional Sequential Monitoring Network Design

    Source: Journal of Hydrologic Engineering:;2019:;Volume ( 024 ):;issue: 003
    Author:
    Dilip Kumar Roy; Bithin Datta
    DOI: 10.1061/(ASCE)HE.1943-5584.0001765
    Publisher: American Society of Civil Engineers
    Abstract: A three-dimensional compliance monitoring network design methodology is presented to develop an adaptive and sequentially modified management policy that intends to improve optimal and justifiable use of groundwater resources in coastal aquifers. In the first step, an ensemble metamodel-based multiobjective prescriptive model is developed using a coupled simulation-optimization approach to derive a set of Pareto optimal groundwater extraction strategies. Prediction uncertainty of metamodels is addressed by utilizing a weighted average ensemble using set pair analysis. In the second step, a monitoring network is designed for evaluating the compliance of the implemented strategies with the prescribed management goals due to possible uncertainties associated with field-scale application of the proposed management policy. Optimal monitoring locations are obtained by maximizing Shannon’s entropy between the saltwater concentrations at the selected potential locations. Performance of the proposed three-dimensional sequential compliance monitoring network design is assessed for an illustrative multilayered coastal aquifer study area. The performance evaluations show that sequential improvements of optimal management strategy is possible by using saltwater concentrations measured at the proposed optimal compliance monitoring locations. Therefore, the salinity concentration data collected at the designed compliance monitoring wells can be used to collect feedback information in terms of salinity concentrations. This feedback information can be applied to improve the initially prescribed optimal groundwater extraction patterns while keeping the original management goal intact.
    • Download: (1.190Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Adaptive Management of Coastal Aquifers Using Entropy-Set Pair Analysis–Based Three-Dimensional Sequential Monitoring Network Design

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4255086
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorDilip Kumar Roy; Bithin Datta
    date accessioned2019-03-10T12:12:12Z
    date available2019-03-10T12:12:12Z
    date issued2019
    identifier other%28ASCE%29HE.1943-5584.0001765.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4255086
    description abstractA three-dimensional compliance monitoring network design methodology is presented to develop an adaptive and sequentially modified management policy that intends to improve optimal and justifiable use of groundwater resources in coastal aquifers. In the first step, an ensemble metamodel-based multiobjective prescriptive model is developed using a coupled simulation-optimization approach to derive a set of Pareto optimal groundwater extraction strategies. Prediction uncertainty of metamodels is addressed by utilizing a weighted average ensemble using set pair analysis. In the second step, a monitoring network is designed for evaluating the compliance of the implemented strategies with the prescribed management goals due to possible uncertainties associated with field-scale application of the proposed management policy. Optimal monitoring locations are obtained by maximizing Shannon’s entropy between the saltwater concentrations at the selected potential locations. Performance of the proposed three-dimensional sequential compliance monitoring network design is assessed for an illustrative multilayered coastal aquifer study area. The performance evaluations show that sequential improvements of optimal management strategy is possible by using saltwater concentrations measured at the proposed optimal compliance monitoring locations. Therefore, the salinity concentration data collected at the designed compliance monitoring wells can be used to collect feedback information in terms of salinity concentrations. This feedback information can be applied to improve the initially prescribed optimal groundwater extraction patterns while keeping the original management goal intact.
    publisherAmerican Society of Civil Engineers
    titleAdaptive Management of Coastal Aquifers Using Entropy-Set Pair Analysis–Based Three-Dimensional Sequential Monitoring Network Design
    typeJournal Paper
    journal volume24
    journal issue3
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)HE.1943-5584.0001765
    page04018072
    treeJournal of Hydrologic Engineering:;2019:;Volume ( 024 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian