YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Accounting for Mixed Populations in Flood Frequency Analysis: Bulletin 17C Perspective

    Source: Journal of Hydrologic Engineering:;2019:;Volume ( 024 ):;issue: 003
    Author:
    Nancy A. Barth; Gabriele Villarini; Kathleen White
    DOI: 10.1061/(ASCE)HE.1943-5584.0001762
    Publisher: American Society of Civil Engineers
    Abstract: Bulletin 17B and its proposed update, Bulletin 17C, continue to recognize difficulties in determining flood frequency estimates among streamflow records that contain flood peaks coming from different flood-generating mechanisms, as is the case in the western United States [Interagency Advisory Committee on Water Data (1982). “Guidelines for determining flood flow frequency: Hydrology Subcommittee Bulletin 17B.” Reston, VA: USGS]. In the “Future Studies” section of Bulletin 17C, the Work Group identified the need for “the identification and treatment of mixed distributions, including those based on hydrometeorological…conditions” [England, J. F., Jr., T. A. Cohn, B. A. Faber, J. R. Stedinger, W. O. Thomas, Jr., A. G. Veilleux, J. E. Kiang, and R. R. Mason, Jr. (2018). “Guidelines for determining flood flow frequency—Bulletin 17C.” Chap. B5 in USGS Techniques and Methods, Book 4. Reston, VA: USGS]. This study provides a general statistical framework to perform a process-driven flood frequency analysis using a weighted mixed population approach. Furthermore, it allows for accounting for both sampling and mixing uncertainties. Analyses are based on 43 long-term USGS stream gauges in the western US with at least 50 years of annual peak flow data, at least 25 of which are generated by atmospheric rivers (ARs). Visual and quantitative goodness-of-fit assessments are made to evaluate the performance of the weighted mixed population approach with respect to the observations. Thirty-four (80%) of the 43 sites have similar flood frequency curves from both the homogeneous (single) and heterogeneous (weighted mixed) population methodological approaches. Yet nine (20%) of the sites have notably different quantile estimates in the upper tail of the distribution. Two important factors contribute to the overall differences in the flood frequency estimates among these sites, regardless of their physiographic locations. The best goodness of fit in the upper tail of the distribution, the portion of most concern in designing flood flow structures, is found when (1) potentially influential low floods (PILFS) are identified, and/or (2) the composite distribution contains markedly different at-site log-unit skews (shape parameter) among the AR/non-AR subpopulations compared with the single homogeneous population. Furthermore, the weighted mixed population confidence intervals tend to be wider than the single population in both tails of the distribution, due primarily to the reduced sample size from separating the observed flow series into AR/non-AR subpopulations and the contributions from the mixing fraction of ARs. However, we found similar interval widths throughout the remaining distribution, implying that our simulation framework can capture the improved procedures for quantifying quantile estimate uncertainties described in Bulletin 17C in addition to the mixing ratio uncertainties.
    • Download: (1.499Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Accounting for Mixed Populations in Flood Frequency Analysis: Bulletin 17C Perspective

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4255082
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorNancy A. Barth; Gabriele Villarini; Kathleen White
    date accessioned2019-03-10T12:12:07Z
    date available2019-03-10T12:12:07Z
    date issued2019
    identifier other%28ASCE%29HE.1943-5584.0001762.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4255082
    description abstractBulletin 17B and its proposed update, Bulletin 17C, continue to recognize difficulties in determining flood frequency estimates among streamflow records that contain flood peaks coming from different flood-generating mechanisms, as is the case in the western United States [Interagency Advisory Committee on Water Data (1982). “Guidelines for determining flood flow frequency: Hydrology Subcommittee Bulletin 17B.” Reston, VA: USGS]. In the “Future Studies” section of Bulletin 17C, the Work Group identified the need for “the identification and treatment of mixed distributions, including those based on hydrometeorological…conditions” [England, J. F., Jr., T. A. Cohn, B. A. Faber, J. R. Stedinger, W. O. Thomas, Jr., A. G. Veilleux, J. E. Kiang, and R. R. Mason, Jr. (2018). “Guidelines for determining flood flow frequency—Bulletin 17C.” Chap. B5 in USGS Techniques and Methods, Book 4. Reston, VA: USGS]. This study provides a general statistical framework to perform a process-driven flood frequency analysis using a weighted mixed population approach. Furthermore, it allows for accounting for both sampling and mixing uncertainties. Analyses are based on 43 long-term USGS stream gauges in the western US with at least 50 years of annual peak flow data, at least 25 of which are generated by atmospheric rivers (ARs). Visual and quantitative goodness-of-fit assessments are made to evaluate the performance of the weighted mixed population approach with respect to the observations. Thirty-four (80%) of the 43 sites have similar flood frequency curves from both the homogeneous (single) and heterogeneous (weighted mixed) population methodological approaches. Yet nine (20%) of the sites have notably different quantile estimates in the upper tail of the distribution. Two important factors contribute to the overall differences in the flood frequency estimates among these sites, regardless of their physiographic locations. The best goodness of fit in the upper tail of the distribution, the portion of most concern in designing flood flow structures, is found when (1) potentially influential low floods (PILFS) are identified, and/or (2) the composite distribution contains markedly different at-site log-unit skews (shape parameter) among the AR/non-AR subpopulations compared with the single homogeneous population. Furthermore, the weighted mixed population confidence intervals tend to be wider than the single population in both tails of the distribution, due primarily to the reduced sample size from separating the observed flow series into AR/non-AR subpopulations and the contributions from the mixing fraction of ARs. However, we found similar interval widths throughout the remaining distribution, implying that our simulation framework can capture the improved procedures for quantifying quantile estimate uncertainties described in Bulletin 17C in addition to the mixing ratio uncertainties.
    publisherAmerican Society of Civil Engineers
    titleAccounting for Mixed Populations in Flood Frequency Analysis: Bulletin 17C Perspective
    typeJournal Paper
    journal volume24
    journal issue3
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)HE.1943-5584.0001762
    page04019002
    treeJournal of Hydrologic Engineering:;2019:;Volume ( 024 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian