YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Particle-Scale Mechanisms in Undrained Triaxial Compression of Biocemented Sands: Insights from 3D DEM Simulations with Flexible Boundary

    Source: International Journal of Geomechanics:;2019:;Volume ( 019 ):;issue: 004
    Author:
    Pu Yang; Edward Kavazanjian; Narayanan Neithalath
    DOI: 10.1061/(ASCE)GM.1943-5622.0001346
    Publisher: American Society of Civil Engineers
    Abstract: A three-dimensional (3D) discrete element method (DEM)-based numerical model is used to simulate the macromechanical response of sand strengthened using microbially induced carbonate precipitation (MICP) under undrained triaxial compression and inform the particle-scale mechanisms responsible for the behavior. The constant volume method is used to simulate saturated media. Although simulations using rigid boundaries are capable of representing the response of uncemented sands, virtual undrained triaxial tests on cemented sands require the use of flexible boundaries. Flexible membrane boundaries are created using particle facets (PFacets) as the building blocks. A methodology to implement virtual undrained triaxial compression using PFacet-based membrane boundaries is developed. The macroscale response of sands with varying degrees of cementation is adequately captured by this model. A cohesive bond strength, used to express the degree of cementation, is found to be well related to the shear-wave velocity through the soil sample. The model correctly predicts the occurrence of strain localization in cemented media, and the expected trends in shear band formation. The evolution of normal contact force distributions and coordination numbers as functions of both the cementation level and axial strain are also predicted.
    • Download: (6.057Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Particle-Scale Mechanisms in Undrained Triaxial Compression of Biocemented Sands: Insights from 3D DEM Simulations with Flexible Boundary

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4254921
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorPu Yang; Edward Kavazanjian; Narayanan Neithalath
    date accessioned2019-03-10T12:07:16Z
    date available2019-03-10T12:07:16Z
    date issued2019
    identifier other%28ASCE%29GM.1943-5622.0001346.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4254921
    description abstractA three-dimensional (3D) discrete element method (DEM)-based numerical model is used to simulate the macromechanical response of sand strengthened using microbially induced carbonate precipitation (MICP) under undrained triaxial compression and inform the particle-scale mechanisms responsible for the behavior. The constant volume method is used to simulate saturated media. Although simulations using rigid boundaries are capable of representing the response of uncemented sands, virtual undrained triaxial tests on cemented sands require the use of flexible boundaries. Flexible membrane boundaries are created using particle facets (PFacets) as the building blocks. A methodology to implement virtual undrained triaxial compression using PFacet-based membrane boundaries is developed. The macroscale response of sands with varying degrees of cementation is adequately captured by this model. A cohesive bond strength, used to express the degree of cementation, is found to be well related to the shear-wave velocity through the soil sample. The model correctly predicts the occurrence of strain localization in cemented media, and the expected trends in shear band formation. The evolution of normal contact force distributions and coordination numbers as functions of both the cementation level and axial strain are also predicted.
    publisherAmerican Society of Civil Engineers
    titleParticle-Scale Mechanisms in Undrained Triaxial Compression of Biocemented Sands: Insights from 3D DEM Simulations with Flexible Boundary
    typeJournal Paper
    journal volume19
    journal issue4
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0001346
    page04019009
    treeInternational Journal of Geomechanics:;2019:;Volume ( 019 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian