YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Ovalization Restraint in Four-Point Bending Tests of Tubes

    Source: Journal of Engineering Mechanics:;2019:;Volume ( 145 ):;issue: 003
    Author:
    Qing Liu; Adam J. Sadowski; J. Michael Rotter
    DOI: 10.1061/(ASCE)EM.1943-7889.0001571
    Publisher: American Society of Civil Engineers
    Abstract: Four-point bending tests have been a staple in many structural engineering experiments as a reliable way of assessing the bending resistance of circular hollow sections, tubes, and cylindrical shells, and they continue to be widely performed. However, relatively little attention appears to have been paid to quantifying the effects of different boundary conditions on the test outcome. In particular, the restraint or freedom given to the cross section at the ends of a specimen to ovalize can have a significant impact when the specimen is in an appropriate length range. Ovalization is an elastic geometrically nonlinear phenomenon that is known to reduce the elastic bending resistance by as much as half in long tubes or cylinders. This paper presents a short distillation of some recent advances in understanding the buckling of cylindrical shells under uniform bending, identifying the strong influence of cylinder length on cross-section ovalization. A sample set of three-dimensional load application arrangements used in existing four-point bending tests was simulated using finite elements, allowing an assessment of the differences caused by prebuckling ovalization and its effect on the tested bending resistance. The study is limited to elastic behavior to identify the effect of ovalization alone in reducing stiffness without material nonlinearity. The outcomes demonstrate that maintaining circularity at inner load application points by appropriate stiffening has a significant effect. With freedom to ovalize, a significant reduction in stiffness occurs, leading to much lower bending resistance at buckling than may be achievable in practical applications.
    • Download: (2.307Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Ovalization Restraint in Four-Point Bending Tests of Tubes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4254854
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorQing Liu; Adam J. Sadowski; J. Michael Rotter
    date accessioned2019-03-10T12:05:46Z
    date available2019-03-10T12:05:46Z
    date issued2019
    identifier other%28ASCE%29EM.1943-7889.0001571.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4254854
    description abstractFour-point bending tests have been a staple in many structural engineering experiments as a reliable way of assessing the bending resistance of circular hollow sections, tubes, and cylindrical shells, and they continue to be widely performed. However, relatively little attention appears to have been paid to quantifying the effects of different boundary conditions on the test outcome. In particular, the restraint or freedom given to the cross section at the ends of a specimen to ovalize can have a significant impact when the specimen is in an appropriate length range. Ovalization is an elastic geometrically nonlinear phenomenon that is known to reduce the elastic bending resistance by as much as half in long tubes or cylinders. This paper presents a short distillation of some recent advances in understanding the buckling of cylindrical shells under uniform bending, identifying the strong influence of cylinder length on cross-section ovalization. A sample set of three-dimensional load application arrangements used in existing four-point bending tests was simulated using finite elements, allowing an assessment of the differences caused by prebuckling ovalization and its effect on the tested bending resistance. The study is limited to elastic behavior to identify the effect of ovalization alone in reducing stiffness without material nonlinearity. The outcomes demonstrate that maintaining circularity at inner load application points by appropriate stiffening has a significant effect. With freedom to ovalize, a significant reduction in stiffness occurs, leading to much lower bending resistance at buckling than may be achievable in practical applications.
    publisherAmerican Society of Civil Engineers
    titleOvalization Restraint in Four-Point Bending Tests of Tubes
    typeJournal Paper
    journal volume145
    journal issue3
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0001571
    page04019009
    treeJournal of Engineering Mechanics:;2019:;Volume ( 145 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian